Results 1  10
of
10,203
Random DFA's can be Approximately Learned from Sparse Uniform Examples
, 1998
"... Approximate inference of finite state machines from sparse labeled examples has been proved NPhard when an adversary chooses the target machine and the training set [Ang78, KV89, PW89]. We have, however, empirically found that DFA's are approximately learnable from sparse data when the target ..."
Abstract

Cited by 82 (3 self)
 Add to MetaCart
Approximate inference of finite state machines from sparse labeled examples has been proved NPhard when an adversary chooses the target machine and the training set [Ang78, KV89, PW89]. We have, however, empirically found that DFA's are approximately learnable from sparse data when the target
Robust face recognition via sparse representation
 IEEE TRANS. PATTERN ANALYSIS AND MACHINE INTELLIGENCE
, 2008
"... We consider the problem of automatically recognizing human faces from frontal views with varying expression and illumination, as well as occlusion and disguise. We cast the recognition problem as one of classifying among multiple linear regression models, and argue that new theory from sparse signa ..."
Abstract

Cited by 936 (40 self)
 Add to MetaCart
. This framework can handle errors due to occlusion and corruption uniformly, by exploiting the fact that these errors are often sparse w.r.t. to the standard (pixel) basis. The theory of sparse representation helps predict how much occlusion the recognition algorithm can handle and how to choose the training
Sparse Bayesian Learning and the Relevance Vector Machine
, 2001
"... This paper introduces a general Bayesian framework for obtaining sparse solutions to regression and classification tasks utilising models linear in the parameters. Although this framework is fully general, we illustrate our approach with a particular specialisation that we denote the `relevance vect ..."
Abstract

Cited by 966 (5 self)
 Add to MetaCart
This paper introduces a general Bayesian framework for obtaining sparse solutions to regression and classification tasks utilising models linear in the parameters. Although this framework is fully general, we illustrate our approach with a particular specialisation that we denote the `relevance
Sparse MRI: The Application of Compressed Sensing for Rapid MR Imaging
 MAGNETIC RESONANCE IN MEDICINE 58:1182–1195
, 2007
"... The sparsity which is implicit in MR images is exploited to significantly undersample kspace. Some MR images such as angiograms are already sparse in the pixel representation; other, more complicated images have a sparse representation in some transform domain–for example, in terms of spatial finit ..."
Abstract

Cited by 538 (11 self)
 Add to MetaCart
The sparsity which is implicit in MR images is exploited to significantly undersample kspace. Some MR images such as angiograms are already sparse in the pixel representation; other, more complicated images have a sparse representation in some transform domain–for example, in terms of spatial
Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems
 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING
, 2007
"... Many problems in signal processing and statistical inference involve finding sparse solutions to underdetermined, or illconditioned, linear systems of equations. A standard approach consists in minimizing an objective function which includes a quadratic (squared ℓ2) error term combined with a spa ..."
Abstract

Cited by 539 (17 self)
 Add to MetaCart
sparsenessinducing (ℓ1) regularization term.Basis pursuit, the least absolute shrinkage and selection operator (LASSO), waveletbased deconvolution, and compressed sensing are a few wellknown examples of this approach. This paper proposes gradient projection (GP) algorithms for the bound
KSVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation
, 2006
"... In recent years there has been a growing interest in the study of sparse representation of signals. Using an overcomplete dictionary that contains prototype signalatoms, signals are described by sparse linear combinations of these atoms. Applications that use sparse representation are many and inc ..."
Abstract

Cited by 935 (41 self)
 Add to MetaCart
that alternates between sparse coding of the examples based on the current dictionary and a process of updating the dictionary atoms to better fit the data. The update of the dictionary columns is combined with an update of the sparse representations, thereby accelerating convergence. The KSVD algorithm
Generalization in Reinforcement Learning: Successful Examples Using Sparse Coarse Coding
 Advances in Neural Information Processing Systems 8
, 1996
"... On large problems, reinforcement learning systems must use parameterized function approximators such as neural networks in order to generalize between similar situations and actions. In these cases there are no strong theoretical results on the accuracy of convergence, and computational results have ..."
Abstract

Cited by 433 (20 self)
 Add to MetaCart
the control tasks they attempted, and for one that is significantly larger. The most important differences are that we used sparsecoarsecoded function approximators (CMACs) whereas they used mostly global function approximators, and that we learned online whereas they learned offline. Boyan and Moore
Stable signal recovery from incomplete and inaccurate measurements,”
 Comm. Pure Appl. Math.,
, 2006
"... Abstract Suppose we wish to recover a vector x 0 ∈ R m (e.g., a digital signal or image) from incomplete and contaminated observations y = Ax 0 + e; A is an n × m matrix with far fewer rows than columns (n m) and e is an error term. Is it possible to recover x 0 accurately based on the data y? To r ..."
Abstract

Cited by 1397 (38 self)
 Add to MetaCart
? To recover x 0 , we consider the solution x to the 1 regularization problem where is the size of the error term e. We show that if A obeys a uniform uncertainty principle (with unitnormed columns) and if the vector x 0 is sufficiently sparse, then the solution is within the noise level As a first example
Training Linear SVMs in Linear Time
, 2006
"... Linear Support Vector Machines (SVMs) have become one of the most prominent machine learning techniques for highdimensional sparse data commonly encountered in applications like text classification, wordsense disambiguation, and drug design. These applications involve a large number of examples n ..."
Abstract

Cited by 549 (6 self)
 Add to MetaCart
Linear Support Vector Machines (SVMs) have become one of the most prominent machine learning techniques for highdimensional sparse data commonly encountered in applications like text classification, wordsense disambiguation, and drug design. These applications involve a large number of examples n
For Most Large Underdetermined Systems of Linear Equations the Minimal ℓ1norm Solution is also the Sparsest Solution
 Comm. Pure Appl. Math
, 2004
"... We consider linear equations y = Φα where y is a given vector in R n, Φ is a given n by m matrix with n < m ≤ An, and we wish to solve for α ∈ R m. We suppose that the columns of Φ are normalized to unit ℓ 2 norm 1 and we place uniform measure on such Φ. We prove the existence of ρ = ρ(A) so that ..."
Abstract

Cited by 568 (10 self)
 Add to MetaCart
We consider linear equations y = Φα where y is a given vector in R n, Φ is a given n by m matrix with n < m ≤ An, and we wish to solve for α ∈ R m. We suppose that the columns of Φ are normalized to unit ℓ 2 norm 1 and we place uniform measure on such Φ. We prove the existence of ρ = ρ(A) so
Results 1  10
of
10,203