Results 1  10
of
585,112
Efficient Solution Algorithms for Factored MDPs
, 2003
"... This paper addresses the problem of planning under uncertainty in large Markov Decision Processes (MDPs). Factored MDPs represent a complex state space using state variables and the transition model using a dynamic Bayesian network. This representation often allows an exponential reduction in the re ..."
Abstract

Cited by 172 (3 self)
 Add to MetaCart
in the representation size of structured MDPs, but the complexity of exact solution algorithms for such MDPs can grow exponentially in the representation size. In this paper, we present two approximate solution algorithms that exploit structure in factored MDPs. Both use an approximate value function represented as a
The dangers of replication and a solution
 IN PROCEEDINGS OF THE 1996 ACM SIGMOD INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA
, 1996
"... Update anywhereanytimeanyway transactional replication has unstable behavior as the workload scales up: a tenfold increase in nodes and traflc gives a thousand fold increase in deadlocks or reconciliations. Master copy replication (primary copyj schemes reduce this problem. A simple analytic mode ..."
Abstract

Cited by 575 (3 self)
 Add to MetaCart
model demonstrates these results. A new twotier replication algorithm is proposed that allows mobile (disconnected) applications to propose tentative update transactions that are later applied to a master copy. Commutative update transactions avoid the instability of other replication schemes.
The Quickhull algorithm for convex hulls
 ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE
, 1996
"... The convex hull of a set of points is the smallest convex set that contains the points. This article presents a practical convex hull algorithm that combines the twodimensional Quickhull Algorithm with the generaldimension BeneathBeyond Algorithm. It is similar to the randomized, incremental algo ..."
Abstract

Cited by 713 (0 self)
 Add to MetaCart
The convex hull of a set of points is the smallest convex set that contains the points. This article presents a practical convex hull algorithm that combines the twodimensional Quickhull Algorithm with the generaldimension BeneathBeyond Algorithm. It is similar to the randomized, incremental
Nonlinear total variation based noise removal algorithms
, 1992
"... A constrained optimization type of numerical algorithm for removing noise from images is presented. The total variation of the image is minimized subject to constraints involving the statistics of the noise. The constraints are imposed using Lagrange multipliers. The solution is obtained using the g ..."
Abstract

Cited by 2271 (51 self)
 Add to MetaCart
A constrained optimization type of numerical algorithm for removing noise from images is presented. The total variation of the image is minimized subject to constraints involving the statistics of the noise. The constraints are imposed using Lagrange multipliers. The solution is obtained using
FastSLAM: A Factored Solution to the Simultaneous Localization and Mapping Problem
 In Proceedings of the AAAI National Conference on Artificial Intelligence
, 2002
"... The ability to simultaneously localize a robot and accurately map its surroundings is considered by many to be a key prerequisite of truly autonomous robots. However, few approaches to this problem scale up to handle the very large number of landmarks present in real environments. Kalman filterbase ..."
Abstract

Cited by 599 (10 self)
 Add to MetaCart
based algorithms, for example, require time quadratic in the number of landmarks to incorporate each sensor observation. This paper presents FastSLAM, an algorithm that recursively estimates the full posterior distribution over robot pose and landmark locations, yet scales logarithmically with the number
Genetic Algorithms for Multiobjective Optimization: Formulation, Discussion and Generalization
, 1993
"... The paper describes a rankbased fitness assignment method for Multiple Objective Genetic Algorithms (MOGAs). Conventional niche formation methods are extended to this class of multimodal problems and theory for setting the niche size is presented. The fitness assignment method is then modified to a ..."
Abstract

Cited by 633 (15 self)
 Add to MetaCart
satisfactory solution to the problem. Illustrative results of how the DM can interact with the genetic algorithm are presented. They also show the ability of the MOGA to uniformly sample regions of the tradeoff surface.
A training algorithm for optimal margin classifiers
 PROCEEDINGS OF THE 5TH ANNUAL ACM WORKSHOP ON COMPUTATIONAL LEARNING THEORY
, 1992
"... A training algorithm that maximizes the margin between the training patterns and the decision boundary is presented. The technique is applicable to a wide variety of classifiaction functions, including Perceptrons, polynomials, and Radial Basis Functions. The effective number of parameters is adjust ..."
Abstract

Cited by 1865 (43 self)
 Add to MetaCart
A training algorithm that maximizes the margin between the training patterns and the decision boundary is presented. The technique is applicable to a wide variety of classifiaction functions, including Perceptrons, polynomials, and Radial Basis Functions. The effective number of parameters
Multiobjective Optimization Using Nondominated Sorting in Genetic Algorithms
 Evolutionary Computation
, 1994
"... In trying to solve multiobjective optimization problems, many traditional methods scalarize the objective vector into a single objective. In those cases, the obtained solution is highly sensitive to the weight vector used in the scalarization process and demands the user to have knowledge about t ..."
Abstract

Cited by 539 (5 self)
 Add to MetaCart
number of solutions simultaneously. Although a vector evaluated GA (VEGA) has been implemented by Schaffer and has been tried to solve a number of multiobjective problems, the algorithm seems to have bias towards some regions. In this paper, we investigate Goldberg's notion of nondominated
For Most Large Underdetermined Systems of Linear Equations the Minimal ℓ1norm Solution is also the Sparsest Solution
 Comm. Pure Appl. Math
, 2004
"... We consider linear equations y = Φα where y is a given vector in R n, Φ is a given n by m matrix with n < m ≤ An, and we wish to solve for α ∈ R m. We suppose that the columns of Φ are normalized to unit ℓ 2 norm 1 and we place uniform measure on such Φ. We prove the existence of ρ = ρ(A) so that ..."
Abstract

Cited by 568 (10 self)
 Add to MetaCart
that for large n, and for all Φ’s except a negligible fraction, the following property holds: For every y having a representation y = Φα0 by a coefficient vector α0 ∈ R m with fewer than ρ · n nonzeros, the solution α1 of the ℓ 1 minimization problem min �x�1 subject to Φα = y is unique and equal to α0
A NEW POLYNOMIALTIME ALGORITHM FOR LINEAR PROGRAMMING
 COMBINATORICA
, 1984
"... We present a new polynomialtime algorithm for linear programming. In the worst case, the algorithm requires O(tf'SL) arithmetic operations on O(L) bit numbers, where n is the number of variables and L is the number of bits in the input. The running,time of this algorithm is better than the ell ..."
Abstract

Cited by 860 (3 self)
 Add to MetaCart
We present a new polynomialtime algorithm for linear programming. In the worst case, the algorithm requires O(tf'SL) arithmetic operations on O(L) bit numbers, where n is the number of variables and L is the number of bits in the input. The running,time of this algorithm is better than
Results 1  10
of
585,112