Results 1  10
of
154,297
A Fast Quantum Mechanical Algorithm for Database Search
 ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING
, 1996
"... Imagine a phone directory containing N names arranged in completely random order. In order to find someone's phone number with a probability of , any classical algorithm (whether deterministic or probabilistic)
will need to look at a minimum of names. Quantum mechanical systems can be in a supe ..."
Abstract

Cited by 1126 (10 self)
 Add to MetaCart
Imagine a phone directory containing N names arranged in completely random order. In order to find someone's phone number with a probability of , any classical algorithm (whether deterministic or probabilistic)
will need to look at a minimum of names. Quantum mechanical systems can be in a
Algorithms for Quantum Computation: Discrete Logarithms and Factoring
, 1994
"... A computer is generally considered to be a universal computational device; i.e., it is believed able to simulate any physical computational device with a increase in computation time of at most a polynomial factor. It is not clear whether this is still true when quantum mechanics is taken into consi ..."
Abstract

Cited by 1103 (7 self)
 Add to MetaCart
into consideration. Several researchers, starting with David Deutsch, have developed models for quantum mechanical computers and have investigated their computational properties. This paper gives Las Vegas algorithms for finding discrete logarithms and factoring integers on a quantum computer that take a number
Simulating Physics with Computers
 SIAM Journal on Computing
, 1982
"... A digital computer is generally believed to be an efficient universal computing device; that is, it is believed able to simulate any physical computing device with an increase in computation time of at most a polynomial factor. This may not be true when quantum mechanics is taken into consideration. ..."
Abstract

Cited by 601 (1 self)
 Add to MetaCart
A digital computer is generally believed to be an efficient universal computing device; that is, it is believed able to simulate any physical computing device with an increase in computation time of at most a polynomial factor. This may not be true when quantum mechanics is taken into consideration
PolynomialTime Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer
 SIAM J. on Computing
, 1997
"... A digital computer is generally believed to be an efficient universal computing device; that is, it is believed able to simulate any physical computing device with an increase in computation time by at most a polynomial factor. This may not be true when quantum mechanics is taken into consideration. ..."
Abstract

Cited by 1268 (5 self)
 Add to MetaCart
A digital computer is generally believed to be an efficient universal computing device; that is, it is believed able to simulate any physical computing device with an increase in computation time by at most a polynomial factor. This may not be true when quantum mechanics is taken into consideration
Consensus and cooperation in networked multiagent systems
 PROCEEDINGS OF THE IEEE
"... This paper provides a theoretical framework for analysis of consensus algorithms for multiagent networked systems with an emphasis on the role of directed information flow, robustness to changes in network topology due to link/node failures, timedelays, and performance guarantees. An overview of ..."
Abstract

Cited by 772 (2 self)
 Add to MetaCart
networks, and belief propagation. We establish direct connections between spectral and structural properties of complex networks and the speed of information diffusion of consensus algorithms. A brief introduction is provided on networked systems with nonlocal information flow that are considerably faster
Transactional Memory: Architectural Support for LockFree Data Structures
"... A shared data structure is lockfree if its operations do not require mutual exclusion. If one process is interrupted in the middle of an operation, other processes will not be prevented from operating on that object. In highly concurrent systems, lockfree data structures avoid common problems asso ..."
Abstract

Cited by 1006 (24 self)
 Add to MetaCart
A shared data structure is lockfree if its operations do not require mutual exclusion. If one process is interrupted in the middle of an operation, other processes will not be prevented from operating on that object. In highly concurrent systems, lockfree data structures avoid common problems associated with conventional locking techniques, including priority inversion, convoying, and difficulty of avoiding deadlock. This paper introduces transactional memory, a new multiprocessor architecture intended to make lockfree synchronization as efficient (and easy to use) as conventional techniques based on mutual exclusion. Transactional memory allows programmers to define customized readmodifywrite operations that apply to multiple, independentlychosen words of memory. It is implemented by straightforward extensions to any multiprocessor cachecoherence protocol. Simulation results show that transactional memory matches or outperforms the best known locking techniques for simple benchmarks, even in the absence of priority inversion, convoying, and deadlock.
Scale and performance in a distributed file system
 ACM Transactions on Computer Systems
, 1988
"... The Andrew File System is a locationtransparent distributed tile system that will eventually span more than 5000 workstations at Carnegie Mellon University. Large scale affects performance and complicates system operation. In this paper we present observations of a prototype implementation, motivat ..."
Abstract

Cited by 937 (47 self)
 Add to MetaCart
The Andrew File System is a locationtransparent distributed tile system that will eventually span more than 5000 workstations at Carnegie Mellon University. Large scale affects performance and complicates system operation. In this paper we present observations of a prototype implementation, motivate changes in the areas of cache validation, server process structure, name translation, and lowlevel storage representation, and quantitatively demonstrate Andrew’s ability to scale gracefully. We establish the importance of wholefile transfer and caching in Andrew by comparing its performance with that of Sun Microsystem’s NFS tile system. We also show how the aggregation of files into volumes improves the operability of the system.
Superconformal field theory on threebranes at a CalabiYau singularity
 Nucl. Phys. B
, 1998
"... Just as parallel threebranes on a smooth manifold are related to string theory on AdS5 × S 5, parallel threebranes near a conical singularity are related to string theory on AdS5 × X5, for a suitable X5. For the example of the conifold singularity, for which X5 = (SU(2) × SU(2))/U(1), we argue that ..."
Abstract

Cited by 690 (37 self)
 Add to MetaCart
Just as parallel threebranes on a smooth manifold are related to string theory on AdS5 × S 5, parallel threebranes near a conical singularity are related to string theory on AdS5 × X5, for a suitable X5. For the example of the conifold singularity, for which X5 = (SU(2) × SU(2))/U(1), we argue that string theory on AdS5 × X5 can be described by a certain N = 1 supersymmetric gauge theory which we describe in detail.
ChernSimons Gauge Theory as a String Theory
, 2003
"... Certain two dimensional topological field theories can be interpreted as string theory backgrounds in which the usual decoupling of ghosts and matter does not hold. Like ordinary string models, these can sometimes be given spacetime interpretations. For instance, threedimensional ChernSimons gaug ..."
Abstract

Cited by 551 (14 self)
 Add to MetaCart
Certain two dimensional topological field theories can be interpreted as string theory backgrounds in which the usual decoupling of ghosts and matter does not hold. Like ordinary string models, these can sometimes be given spacetime interpretations. For instance, threedimensional ChernSimons gauge theory can arise as a string theory. The worldsheet model in this case involves a topological sigma model. Instanton contributions to the sigma model give rise to Wilson line insertions in the spacetime ChernSimons theory. A certain holomorphic analog of ChernSimons theory can also arise as a string theory.
Results 1  10
of
154,297