Results 1  10
of
80,305
qHook formula of Gansner type for a generalized Young diagram
"... Abstract. The purpose of this paper is to present the qhook formula of Gansner type for a generalized Young diagram in the sense of D. Peterson and R. A. Proctor. This gives a farreaching generalization of a hook length formula due to J. S. Frame, G. de B. Robinson, and R. M. Thrall. Furthurmore, ..."
Abstract

Cited by 4 (0 self)
 Add to MetaCart
Abstract. The purpose of this paper is to present the qhook formula of Gansner type for a generalized Young diagram in the sense of D. Peterson and R. A. Proctor. This gives a farreaching generalization of a hook length formula due to J. S. Frame, G. de B. Robinson, and R. M. Thrall. Furthurmore
SplitStream: HighBandwidth Multicast in Cooperative Environments
 SOSP '03
, 2003
"... In treebased multicast systems, a relatively small number of interior nodes carry the load of forwarding multicast messages. This works well when the interior nodes are highly available, d d cated infrastructure routers but it poses a problem for applicationlevel multicast in peertopeer systems. ..."
Abstract

Cited by 570 (17 self)
 Add to MetaCart
. SplitStreamadV esses this problem by striping the content across a forest of interiornodno# sjoint multicast trees that d stributes the forward ng load among all participating peers. For example, it is possible to construct efficient SplitStream forests in which each peer contributes only as much
Qualitative process theory
 MIT AI Lab Memo
, 1982
"... Objects move, collide, flow, bend, heat up, cool down, stretch, compress. and boil. These and other things that cause changes in objects over time are intuitively characterized as processes. To understand commonsense physical reasoning and make programs that interact with the physical world as well ..."
Abstract

Cited by 884 (92 self)
 Add to MetaCart
Objects move, collide, flow, bend, heat up, cool down, stretch, compress. and boil. These and other things that cause changes in objects over time are intuitively characterized as processes. To understand commonsense physical reasoning and make programs that interact with the physical world as well as people do we must understand qualitative reasoning about processes, when they will occur, their effects, and when they will stop. Qualitative process theory defines a simple notion of physical process that appears useful as a language in which to write dynamical theories. Reasoning about processes also motivates a new qualitative representation for quantity in terms of inequalities, called the quantity space. This paper describes the basic concepts of qualitative process theory, several different kinds of reasoning that can be performed with them, and discusses its implications for causal reasoning. Several extended examples illustrate the utility of the theory, including figuring out that a boiler can blow up, that an oscillator with friction will eventually stop, and how to say that you can pull with a string, but not push with it. 1
Community detection in graphs
, 2009
"... The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices of th ..."
Abstract

Cited by 801 (1 self)
 Add to MetaCart
The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices of the same cluster and comparatively few edges joining vertices of different clusters. Such
Semantic similarity based on corpus statistics and lexical taxonomy
 Proc of 10th International Conference on Research in Computational Linguistics, ROCLINGâ€™97
, 1997
"... This paper presents a new approach for measuring semantic similarity/distance between words and concepts. It combines a lexical taxonomy structure with corpus statistical information so that the semantic distance between nodes in the semantic space constructed by the taxonomy can be better quantifie ..."
Abstract

Cited by 852 (0 self)
 Add to MetaCart
This paper presents a new approach for measuring semantic similarity/distance between words and concepts. It combines a lexical taxonomy structure with corpus statistical information so that the semantic distance between nodes in the semantic space constructed by the taxonomy can be better quantified with the computational evidence derived from a distributional analysis of corpus data. Specifically, the proposed measure is a combined approach that inherits the edgebased approach of the edge counting scheme, which is then enhanced by the nodebased approach of the information content calculation. When tested on a common data set of word pair similarity ratings, the proposed approach outperforms other computational models. It gives the highest correlation value (r = 0.828) with a benchmark based on human similarity judgements, whereas an upper bound (r = 0.885) is observed when human subjects replicate the same task. 1.
The Coordination of Arm Movements: An Experimentally Confirmed Mathematical Model
 Journal of neuroscience
, 1985
"... This paper presents studies of the coordination of voluntary human arm movements. A mathematical model is formulated which is shown to predict both the qualitative features and the quantitative details observed experimentally in planar, multijoint arm movements. Coordination is modeled mathematic ..."
Abstract

Cited by 663 (18 self)
 Add to MetaCart
This paper presents studies of the coordination of voluntary human arm movements. A mathematical model is formulated which is shown to predict both the qualitative features and the quantitative details observed experimentally in planar, multijoint arm movements. Coordination is modeled mathematically by defining an objective function, a measure of performance for any possible movement. The unique trajectory which yields the best performance is determined using dynamic optimization theory. In the work presented here, the objective function is the square of the magnitude of jerk (rate of change of acceleration) of the hand integrated over the entire movement. This is equivalent to assuming that a major goal of motor coordination is the production of the smoothest possible movement
Fast Effective Rule Induction
, 1995
"... Many existing rule learning systems are computationally expensive on large noisy datasets. In this paper we evaluate the recentlyproposed rule learning algorithm IREP on a large and diverse collection of benchmark problems. We show that while IREP is extremely efficient, it frequently gives error r ..."
Abstract

Cited by 1257 (21 self)
 Add to MetaCart
Many existing rule learning systems are computationally expensive on large noisy datasets. In this paper we evaluate the recentlyproposed rule learning algorithm IREP on a large and diverse collection of benchmark problems. We show that while IREP is extremely efficient, it frequently gives error rates higher than those of C4.5 and C4.5rules. We then propose a number of modifications resulting in an algorithm RIPPERk that is very competitive with C4.5rules with respect to error rates, but much more efficient on large samples. RIPPERk obtains error rates lower than or equivalent to C4.5rules on 22 of 37 benchmark problems, scales nearly linearly with the number of training examples, and can efficiently process noisy datasets containing hundreds of thousands of examples.
Results 1  10
of
80,305