Results 1  10
of
1,380,949
An Approximate Projected Consensus Algorithm for Computing Intersection of Convex Sets∗
"... ar ..."
Consensus and cooperation in networked multiagent systems
 PROCEEDINGS OF THE IEEE
"... This paper provides a theoretical framework for analysis of consensus algorithms for multiagent networked systems with an emphasis on the role of directed information flow, robustness to changes in network topology due to link/node failures, timedelays, and performance guarantees. An overview of ..."
Abstract

Cited by 772 (2 self)
 Add to MetaCart
This paper provides a theoretical framework for analysis of consensus algorithms for multiagent networked systems with an emphasis on the role of directed information flow, robustness to changes in network topology due to link/node failures, timedelays, and performance guarantees. An overview
The Weakest Failure Detector for Solving Consensus
, 1996
"... We determine what information about failures is necessary and sufficient to solve Consensus in asynchronous distributed systems subject to crash failures. In [CT91], it is shown that 3W, a failure detector that provides surprisingly little information about which processes have crashed, is sufficien ..."
Abstract

Cited by 492 (21 self)
 Add to MetaCart
We determine what information about failures is necessary and sufficient to solve Consensus in asynchronous distributed systems subject to crash failures. In [CT91], it is shown that 3W, a failure detector that provides surprisingly little information about which processes have crashed
Consensus Problems in Networks of Agents with Switching Topology and TimeDelays
, 2003
"... In this paper, we discuss consensus problems for a network of dynamic agents with fixed and switching topologies. We analyze three cases: i) networks with switching topology and no timedelays, ii) networks with fixed topology and communication timedelays, and iii) maxconsensus problems (or leader ..."
Abstract

Cited by 1052 (17 self)
 Add to MetaCart
leader determination) for groups of discretetime agents. In each case, we introduce a linear/nonlinear consensus protocol and provide convergence analysis for the proposed distributed algorithm. Moreover, we establish a connection between the Fiedler eigenvalue of the information flow in a network (i
Planning Algorithms
, 2004
"... This book presents a unified treatment of many different kinds of planning algorithms. The subject lies at the crossroads between robotics, control theory, artificial intelligence, algorithms, and computer graphics. The particular subjects covered include motion planning, discrete planning, planning ..."
Abstract

Cited by 1108 (51 self)
 Add to MetaCart
This book presents a unified treatment of many different kinds of planning algorithms. The subject lies at the crossroads between robotics, control theory, artificial intelligence, algorithms, and computer graphics. The particular subjects covered include motion planning, discrete planning
Efficient Variants of the ICP Algorithm
 INTERNATIONAL CONFERENCE ON 3D DIGITAL IMAGING AND MODELING
, 2001
"... The ICP (Iterative Closest Point) algorithm is widely used for geometric alignment of threedimensional models when an initial estimate of the relative pose is known. Many variants of ICP have been proposed, affecting all phases of the algorithm from the selection and matching of points to the minim ..."
Abstract

Cited by 702 (5 self)
 Add to MetaCart
The ICP (Iterative Closest Point) algorithm is widely used for geometric alignment of threedimensional models when an initial estimate of the relative pose is known. Many variants of ICP have been proposed, affecting all phases of the algorithm from the selection and matching of points
Projection Pursuit Regression
 Journal of the American Statistical Association
, 1981
"... A new method for nonparametric multiple regression is presented. The procedure models the regression surface as a sum of general smooth functions of linear combinations of the predictor variables in an iterative manner. It is more general than standard stepwise and stagewise regression procedures, ..."
Abstract

Cited by 555 (6 self)
 Add to MetaCart
A new method for nonparametric multiple regression is presented. The procedure models the regression surface as a sum of general smooth functions of linear combinations of the predictor variables in an iterative manner. It is more general than standard stepwise and stagewise regression procedures, does not require the definition of a metric in the predictor space, and lends itself to graphical interpretation.
A Simple, Fast, and Accurate Algorithm to Estimate Large Phylogenies by Maximum Likelihood
, 2003
"... The increase in the number of large data sets and the complexity of current probabilistic sequence evolution models necessitates fast and reliable phylogeny reconstruction methods. We describe a new approach, based on the maximumlikelihood principle, which clearly satisfies these requirements. The ..."
Abstract

Cited by 2109 (30 self)
 Add to MetaCart
. The core of this method is a simple hillclimbing algorithm that adjusts tree topology and branch lengths simultaneously. This algorithm starts from an initial tree built by a fast distancebased method and modifies this tree to improve its likelihood at each iteration. Due to this simultaneous adjustment
Nonlinear total variation based noise removal algorithms
, 1992
"... A constrained optimization type of numerical algorithm for removing noise from images is presented. The total variation of the image is minimized subject to constraints involving the statistics of the noise. The constraints are imposed using Lagrange multipliers. The solution is obtained using the g ..."
Abstract

Cited by 2270 (52 self)
 Add to MetaCart
the gradientprojection method. This amounts to solving a time dependent partial differential equation on a manifold determined by the constraints. As t ~ 0o the solution converges to a steady state which is the denoised image. The numerical algorithm is simple and relatively fast. The results appear
Factor Graphs and the SumProduct Algorithm
 IEEE TRANSACTIONS ON INFORMATION THEORY
, 1998
"... A factor graph is a bipartite graph that expresses how a "global" function of many variables factors into a product of "local" functions. Factor graphs subsume many other graphical models including Bayesian networks, Markov random fields, and Tanner graphs. Following one simple c ..."
Abstract

Cited by 1787 (72 self)
 Add to MetaCart
computational rule, the sumproduct algorithm operates in factor graphs to computeeither exactly or approximatelyvarious marginal functions by distributed messagepassing in the graph. A wide variety of algorithms developed in artificial intelligence, signal processing, and digital communications can
Results 1  10
of
1,380,949