Results 1  10
of
8,615
The knowledge complexity of interactive proof systems

, 1989
"... Usually, a proof of a theorem contains more knowledge than the mere fact that the theorem is true. For instance, to prove that a graph is Hamiltonian it suffices to exhibit a Hamiltonian tour in it; however, this seems to contain more knowledge than the single bit Hamiltonian/nonHamiltonian. In th ..."
Abstract

Cited by 1246 (39 self)
 Add to MetaCart
Usually, a proof of a theorem contains more knowledge than the mere fact that the theorem is true. For instance, to prove that a graph is Hamiltonian it suffices to exhibit a Hamiltonian tour in it; however, this seems to contain more knowledge than the single bit Hamiltonian
Probabilistic checking of proofs: a new characterization of NP
 JOURNAL OF THE ACM
, 1998
"... We give a new characterization of NP: the class NP contains exactly those languages L for which membership proofs (a proof that an input x is in L) can be verified probabilistically in polynomial time using logarithmic number of random bits and by reading sublogarithmic number of bits from the proof ..."
Abstract

Cited by 414 (26 self)
 Add to MetaCart
We give a new characterization of NP: the class NP contains exactly those languages L for which membership proofs (a proof that an input x is in L) can be verified probabilistically in polynomial time using logarithmic number of random bits and by reading sublogarithmic number of bits from
Proofs that Yield Nothing but Their Validity or All Languages in NP Have ZeroKnowledge Proof Systems
 JOURNAL OF THE ACM
, 1991
"... In this paper the generality and wide applicability of Zeroknowledge proofs, a notion introduced by Goldwasser, Micali, and Rackoff is demonstrated. These are probabilistic and interactive proofs that, for the members of a language, efficiently demonstrate membership in the language without convey ..."
Abstract

Cited by 427 (43 self)
 Add to MetaCart
In this paper the generality and wide applicability of Zeroknowledge proofs, a notion introduced by Goldwasser, Micali, and Rackoff is demonstrated. These are probabilistic and interactive proofs that, for the members of a language, efficiently demonstrate membership in the language without
Markov games as a framework for multiagent reinforcement learning
 IN PROCEEDINGS OF THE ELEVENTH INTERNATIONAL CONFERENCE ON MACHINE LEARNING
, 1994
"... In the Markov decision process (MDP) formalization of reinforcement learning, a single adaptive agent interacts with an environment defined by a probabilistic transition function. In this solipsistic view, secondary agents can only be part of the environment and are therefore fixed in their behavior ..."
Abstract

Cited by 601 (13 self)
 Add to MetaCart
In the Markov decision process (MDP) formalization of reinforcement learning, a single adaptive agent interacts with an environment defined by a probabilistic transition function. In this solipsistic view, secondary agents can only be part of the environment and are therefore fixed
TOSSIM: Accurate and Scalable Simulation of Entire TinyOS Applications
, 2003
"... Accurate and scalable simulation has historically been a key enabling factor for systems research. We present TOSSIM, a simulator for TinyOS wireless sensor networks. By exploiting the sensor network domain and TinyOS’s design, TOSSIM can capture network behavior at a high fidelity while scaling to ..."
Abstract

Cited by 784 (19 self)
 Add to MetaCart
to thousands of nodes. By using a probabilistic bit error model for the network, TOSSIM remains simple and efficient, but expressive enough to capture a wide range of network interactions. Using TOSSIM, we have discovered several bugs in TinyOS, ranging from network bitlevel MAC interactions to queue overflows
Practical network support for IP traceback
, 2000
"... This paper describes a technique for tracing anonymous packet flooding attacks in the Internet back towards their source. This work is motivated by the increased frequency and sophistication of denialofservice attacks and by the difficulty in tracing packets with incorrect, or “spoofed”, source ad ..."
Abstract

Cited by 678 (13 self)
 Add to MetaCart
addresses. In this paper we describe a general purpose traceback mechanism based on probabilistic packet marking in the network. Our approach allows a victim to identify the network path(s) traversed by attack traffic without requiring interactive operational support from Internet Service Providers (ISPs
Quantum complexity theory
 in Proc. 25th Annual ACM Symposium on Theory of Computing, ACM
, 1993
"... Abstract. In this paper we study quantum computation from a complexity theoretic viewpoint. Our first result is the existence of an efficient universal quantum Turing machine in Deutsch’s model of a quantum Turing machine (QTM) [Proc. Roy. Soc. London Ser. A, 400 (1985), pp. 97–117]. This constructi ..."
Abstract

Cited by 574 (5 self)
 Add to MetaCart
BPP. The class BQP of languages that are efficiently decidable (with small errorprobability) on a quantum Turing machine satisfies BPP ⊆ BQP ⊆ P ♯P. Therefore, there is no possibility of giving a mathematical proof that quantum Turing machines are more powerful than classical probabilistic Turing
Earthquake Shakes Twitter Users: Realtime Event Detection by Social Sensors
 In Proceedings of the Nineteenth International WWW Conference (WWW2010). ACM
, 2010
"... Twitter, a popular microblogging service, has received much attention recently. An important characteristic of Twitter is its realtime nature. For example, when an earthquake occurs, people make many Twitter posts (tweets) related to the earthquake, which enables detection of earthquake occurrence ..."
Abstract

Cited by 524 (4 self)
 Add to MetaCart
promptly, simply by observing the tweets. As described in this paper, we investigate the realtime interaction of events such as earthquakes, in Twitter, and propose an algorithm to monitor tweets and to detect a target event. To detect a target event, we devise a classifier of tweets based on features
The Foundation of a Generic Theorem Prover
 Journal of Automated Reasoning
, 1989
"... Isabelle [28, 30] is an interactive theorem prover that supports a variety of logics. It represents rules as propositions (not as functions) and builds proofs by combining rules. These operations constitute a metalogic (or `logical framework') in which the objectlogics are formalized. Isabell ..."
Abstract

Cited by 471 (48 self)
 Add to MetaCart
Isabelle [28, 30] is an interactive theorem prover that supports a variety of logics. It represents rules as propositions (not as functions) and builds proofs by combining rules. These operations constitute a metalogic (or `logical framework') in which the objectlogics are formalized
Designing Programs That Check Their Work
, 1989
"... A program correctness checker is an algorithm for checking the output of a computation. That is, given a program and an instance on which the program is run, the checker certifies whether the output of the program on that instance is correct. This paper defines the concept of a program checker. It d ..."
Abstract

Cited by 349 (17 self)
 Add to MetaCart
probabilistic interactive proof, to the design of program checkers for group theoretic computations. Two strucural theorems are proven here. One is a characterization of problems that can be checked. The other theorem establishes equivalence classes of problems such that whenever one problem in a class
Results 1  10
of
8,615