Results 1  10
of
1,793,004
A firstorder primaldual algorithm for convex problems with applications to imaging
, 2010
"... In this paper we study a firstorder primaldual algorithm for convex optimization problems with known saddlepoint structure. We prove convergence to a saddlepoint with rate O(1/N) in finite dimensions, which is optimal for the complete class of nonsmooth problems we are considering in this paper ..."
Abstract

Cited by 435 (20 self)
 Add to MetaCart
in this paper. We further show accelerations of the proposed algorithm to yield optimal rates on easier problems. In particular we show that we can achieve O(1/N 2) convergence on problems, where the primal or the dual objective is uniformly convex, and we can show linear convergence, i.e. O(1/e N) on problems
Pegasos: Primal Estimated subgradient solver for SVM
"... We describe and analyze a simple and effective stochastic subgradient descent algorithm for solving the optimization problem cast by Support Vector Machines (SVM). We prove that the number of iterations required to obtain a solution of accuracy ɛ is Õ(1/ɛ), where each iteration operates on a singl ..."
Abstract

Cited by 531 (21 self)
 Add to MetaCart
We describe and analyze a simple and effective stochastic subgradient descent algorithm for solving the optimization problem cast by Support Vector Machines (SVM). We prove that the number of iterations required to obtain a solution of accuracy ɛ is Õ(1/ɛ), where each iteration operates on a
Global Optimization with Polynomials and the Problem of Moments
 SIAM Journal on Optimization
, 2001
"... We consider the problem of finding the unconstrained global minimum of a realvalued polynomial p(x) : R R, as well as the global minimum of p(x), in a compact set K defined by polynomial inequalities. It is shown that this problem reduces to solving an (often finite) sequence of convex linear mat ..."
Abstract

Cited by 569 (47 self)
 Add to MetaCart
We consider the problem of finding the unconstrained global minimum of a realvalued polynomial p(x) : R R, as well as the global minimum of p(x), in a compact set K defined by polynomial inequalities. It is shown that this problem reduces to solving an (often finite) sequence of convex linear
Unified analysis of discontinuous Galerkin methods for elliptic problems
 SIAM J. Numer. Anal
, 2001
"... Abstract. We provide a framework for the analysis of a large class of discontinuous methods for secondorder elliptic problems. It allows for the understanding and comparison of most of the discontinuous Galerkin methods that have been proposed over the past three decades for the numerical treatment ..."
Abstract

Cited by 519 (31 self)
 Add to MetaCart
Abstract. We provide a framework for the analysis of a large class of discontinuous methods for secondorder elliptic problems. It allows for the understanding and comparison of most of the discontinuous Galerkin methods that have been proposed over the past three decades for the numerical
Improved Approximation Algorithms for Maximum Cut and Satisfiability Problems Using Semidefinite Programming
 Journal of the ACM
, 1995
"... We present randomized approximation algorithms for the maximum cut (MAX CUT) and maximum 2satisfiability (MAX 2SAT) problems that always deliver solutions of expected value at least .87856 times the optimal value. These algorithms use a simple and elegant technique that randomly rounds the solution ..."
Abstract

Cited by 1231 (13 self)
 Add to MetaCart
We present randomized approximation algorithms for the maximum cut (MAX CUT) and maximum 2satisfiability (MAX 2SAT) problems that always deliver solutions of expected value at least .87856 times the optimal value. These algorithms use a simple and elegant technique that randomly rounds
The Vocabulary Problem in HumanSystem Communication
 COMMUNICATIONS OF THE ACM
, 1987
"... In almost all computer applications, users must enter correct words for the desired objects or actions. For success without extensive training, or in firsttries for new targets, the system must recognize terms that will be chosen spontaneously. We studied spontaneous word choice for objects in five ..."
Abstract

Cited by 551 (8 self)
 Add to MetaCart
In almost all computer applications, users must enter correct words for the desired objects or actions. For success without extensive training, or in firsttries for new targets, the system must recognize terms that will be chosen spontaneously. We studied spontaneous word choice for objects in five applicationrelated domains, and found the variability to be surprisingly large. In every case two people favored the same term with probability <0.20. Simulations show how this fundamental property of language limits the success of various design methodologies for vocabularydriven interaction. For example, the popular approach in which access is via one designer's favorite single word will result in 8090 percent failure rates in many common situations. An optimal strategy, unlimited aliasing, is derived and shown to be capable of severalfold improvements.
Cognitive load during problem solving: effects on learning
 COGNITIVE SCIENCE
, 1988
"... Considerable evidence indicates that domain specific knowledge in the form of schemes is the primary factor distinguishing experts from novices in problemsolving skill. Evidence that conventional problemsolving activity is not effective in schema acquisition is also accumulating. It is suggested t ..."
Abstract

Cited by 603 (13 self)
 Add to MetaCart
that a major reason for the ineffectiveness of problem solving as a learning device, is that the cognitive processes required by the two activities overlap insufficiently, and that conventional problem solving in the form of meansends analysis requires a relatively large amount of cognitive processing
Nonlinear component analysis as a kernel eigenvalue problem

, 1996
"... We describe a new method for performing a nonlinear form of Principal Component Analysis. By the use of integral operator kernel functions, we can efficiently compute principal components in highdimensional feature spaces, related to input space by some nonlinear map; for instance the space of all ..."
Abstract

Cited by 1554 (85 self)
 Add to MetaCart
We describe a new method for performing a nonlinear form of Principal Component Analysis. By the use of integral operator kernel functions, we can efficiently compute principal components in highdimensional feature spaces, related to input space by some nonlinear map; for instance the space of all
Results 1  10
of
1,793,004