• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 16,139
Next 10 →

The Nature of Statistical Learning Theory

by Vladimir N. Vapnik , 1999
"... Statistical learning theory was introduced in the late 1960’s. Until the 1990’s it was a purely theoretical analysis of the problem of function estimation from a given collection of data. In the middle of the 1990’s new types of learning algorithms (called support vector machines) based on the deve ..."
Abstract - Cited by 13236 (32 self) - Add to MetaCart
Statistical learning theory was introduced in the late 1960’s. Until the 1990’s it was a purely theoretical analysis of the problem of function estimation from a given collection of data. In the middle of the 1990’s new types of learning algorithms (called support vector machines) based

A block-sorting lossless data compression algorithm

by M Burrows , D J Wheeler , 1994
"... We describe a block-sorting, lossless data compression algorithm, and our implementation of that algorithm. We compare the performance of our implementation with widely available data compressors running on the same hardware. The algorithm works by applying a reversible transformation to a block o ..."
Abstract - Cited by 809 (5 self) - Add to MetaCart
We describe a block-sorting, lossless data compression algorithm, and our implementation of that algorithm. We compare the performance of our implementation with widely available data compressors running on the same hardware. The algorithm works by applying a reversible transformation to a block

A universal algorithm for sequential data compression

by Jacob Ziv, Abraham Lempel - IEEE TRANSACTIONS ON INFORMATION THEORY , 1977
"... A universal algorithm for sequential data compression is presented. Its performance is investigated with respect to a nonprobabilistic model of constrained sources. The compression ratio achieved by the proposed universal code uniformly approaches the lower bounds on the compression ratios attainabl ..."
Abstract - Cited by 1522 (7 self) - Add to MetaCart
A universal algorithm for sequential data compression is presented. Its performance is investigated with respect to a nonprobabilistic model of constrained sources. The compression ratio achieved by the proposed universal code uniformly approaches the lower bounds on the compression ratios

Compressive sampling

by Emmanuel J. Candès , 2006
"... Conventional wisdom and common practice in acquisition and reconstruction of images from frequency data follow the basic principle of the Nyquist density sampling theory. This principle states that to reconstruct an image, the number of Fourier samples we need to acquire must match the desired res ..."
Abstract - Cited by 1441 (15 self) - Add to MetaCart
Conventional wisdom and common practice in acquisition and reconstruction of images from frequency data follow the basic principle of the Nyquist density sampling theory. This principle states that to reconstruct an image, the number of Fourier samples we need to acquire must match the desired

Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems

by Mário A. T. Figueiredo, Robert D. Nowak, Stephen J. Wright - IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING , 2007
"... Many problems in signal processing and statistical inference involve finding sparse solutions to under-determined, or ill-conditioned, linear systems of equations. A standard approach consists in minimizing an objective function which includes a quadratic (squared ℓ2) error term combined with a spa ..."
Abstract - Cited by 539 (17 self) - Add to MetaCart
sparseness-inducing (ℓ1) regularization term.Basis pursuit, the least absolute shrinkage and selection operator (LASSO), wavelet-based deconvolution, and compressed sensing are a few well-known examples of this approach. This paper proposes gradient projection (GP) algorithms for the bound

Sparse MRI: The Application of Compressed Sensing for Rapid MR Imaging

by Michael Lustig, David Donoho, John M. Pauly - MAGNETIC RESONANCE IN MEDICINE 58:1182–1195 , 2007
"... The sparsity which is implicit in MR images is exploited to significantly undersample k-space. Some MR images such as angiograms are already sparse in the pixel representation; other, more complicated images have a sparse representation in some transform domain–for example, in terms of spatial finit ..."
Abstract - Cited by 538 (11 self) - Add to MetaCart
finite-differences or their wavelet coefficients. According to the recently developed mathematical theory of compressedsensing, images with a sparse representation can be recovered from randomly undersampled k-space data, provided an appropriate nonlinear recovery scheme is used. Intuitively, artifacts

Graph-based algorithms for Boolean function manipulation

by Randal E. Bryant - IEEE TRANSACTIONS ON COMPUTERS , 1986
"... In this paper we present a new data structure for representing Boolean functions and an associated set of manipulation algorithms. Functions are represented by directed, acyclic graphs in a manner similar to the representations introduced by Lee [1] and Akers [2], but with further restrictions on th ..."
Abstract - Cited by 3526 (46 self) - Add to MetaCart
In this paper we present a new data structure for representing Boolean functions and an associated set of manipulation algorithms. Functions are represented by directed, acyclic graphs in a manner similar to the representations introduced by Lee [1] and Akers [2], but with further restrictions

Statistical Comparisons of Classifiers over Multiple Data Sets

by Janez Demsar , 2006
"... While methods for comparing two learning algorithms on a single data set have been scrutinized for quite some time already, the issue of statistical tests for comparisons of more algorithms on multiple data sets, which is even more essential to typical machine learning studies, has been all but igno ..."
Abstract - Cited by 744 (0 self) - Add to MetaCart
While methods for comparing two learning algorithms on a single data set have been scrutinized for quite some time already, the issue of statistical tests for comparisons of more algorithms on multiple data sets, which is even more essential to typical machine learning studies, has been all

K-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation

by Michal Aharon, et al. , 2006
"... In recent years there has been a growing interest in the study of sparse representation of signals. Using an overcomplete dictionary that contains prototype signal-atoms, signals are described by sparse linear combinations of these atoms. Applications that use sparse representation are many and inc ..."
Abstract - Cited by 935 (41 self) - Add to MetaCart
and include compression, regularization in inverse problems, feature extraction, and more. Recent activity in this field has concentrated mainly on the study of pursuit algorithms that decompose signals with respect to a given dictionary. Designing dictionaries to better fit the above model can be done

An empirical comparison of voting classification algorithms: Bagging, boosting, and variants.

by Eric Bauer , Philip Chan , Salvatore Stolfo , David Wolpert - Machine Learning, , 1999
"... Abstract. Methods for voting classification algorithms, such as Bagging and AdaBoost, have been shown to be very successful in improving the accuracy of certain classifiers for artificial and real-world datasets. We review these algorithms and describe a large empirical study comparing several vari ..."
Abstract - Cited by 707 (2 self) - Add to MetaCart
Abstract. Methods for voting classification algorithms, such as Bagging and AdaBoost, have been shown to be very successful in improving the accuracy of certain classifiers for artificial and real-world datasets. We review these algorithms and describe a large empirical study comparing several
Next 10 →
Results 1 - 10 of 16,139
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University