• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 112,331
Next 10 →

Basic objects in natural categories

by Eleanor Rosch, Carolyn B. Mervis, Wayne D. Gray, David M. Johnson, Penny Boyes-braem - COGNITIVE PSYCHOLOGY , 1976
"... Categorizations which humans make of the concrete world are not arbitrary but highly determined. In taxonomies of concrete objects, there is one level of abstraction at which the most basic category cuts are made. Basic categories are those which carry the most information, possess the highest categ ..."
Abstract - Cited by 892 (1 self) - Add to MetaCart
Categorizations which humans make of the concrete world are not arbitrary but highly determined. In taxonomies of concrete objects, there is one level of abstraction at which the most basic category cuts are made. Basic categories are those which carry the most information, possess the highest

Hierarchical Models of Object Recognition in Cortex

by Maximilian Riesenhuber, Tomaso Poggio , 1999
"... The classical model of visual processing in cortex is a hierarchy of increasingly sophisticated representations, extending in a natural way the model of simple to complex cells of Hubel and Wiesel. Somewhat surprisingly, little quantitative modeling has been done in the last 15 years to explore th ..."
Abstract - Cited by 836 (84 self) - Add to MetaCart
The classical model of visual processing in cortex is a hierarchy of increasingly sophisticated representations, extending in a natural way the model of simple to complex cells of Hubel and Wiesel. Somewhat surprisingly, little quantitative modeling has been done in the last 15 years to explore

Object class recognition by unsupervised scale-invariant learning

by R. Fergus, P. Perona, A. Zisserman - In CVPR , 2003
"... We present a method to learn and recognize object class models from unlabeled and unsegmented cluttered scenes in a scale invariant manner. Objects are modeled as flexible constellations of parts. A probabilistic representation is used for all aspects of the object: shape, appearance, occlusion and ..."
Abstract - Cited by 1127 (50 self) - Add to MetaCart
Bayesian manner to classify images. The flexible nature of the model is demonstrated by excellent results over a range of datasets including geometrically constrained classes (e.g. faces, cars) and flexible objects (such as animals). 1.

Interactive Graph Cuts for Optimal Boundary & Region Segmentation of Objects in N-D Images

by Yuri Y. Boykov , Marie-Pierre Jolly , 2001
"... In this paper we describe a new technique for general purpose interactive segmentation of N-dimensional images. The user marks certain pixels as “object” or “background” to provide hard constraints for segmentation. Additional soft constraints incorporate both boundary and region information. Graph ..."
Abstract - Cited by 1010 (20 self) - Add to MetaCart
In this paper we describe a new technique for general purpose interactive segmentation of N-dimensional images. The user marks certain pixels as “object” or “background” to provide hard constraints for segmentation. Additional soft constraints incorporate both boundary and region information. Graph

The "Independent Components" of Natural Scenes are Edge Filters

by Anthony J. Bell, Terrence J. Sejnowski , 1997
"... It has previously been suggested that neurons with line and edge selectivities found in primary visual cortex of cats and monkeys form a sparse, distributed representation of natural scenes, and it has been reasoned that such responses should emerge from an unsupervised learning algorithm that attem ..."
Abstract - Cited by 617 (29 self) - Add to MetaCart
It has previously been suggested that neurons with line and edge selectivities found in primary visual cortex of cats and monkeys form a sparse, distributed representation of natural scenes, and it has been reasoned that such responses should emerge from an unsupervised learning algorithm

Contour Tracking By Stochastic Propagation of Conditional Density

by Michael Isard, Andrew Blake , 1996
"... . In Proc. European Conf. Computer Vision, 1996, pp. 343--356, Cambridge, UK The problem of tracking curves in dense visual clutter is a challenging one. Trackers based on Kalman filters are of limited use; because they are based on Gaussian densities which are unimodal, they cannot represent s ..."
Abstract - Cited by 661 (23 self) - Add to MetaCart
simultaneous alternative hypotheses. Extensions to the Kalman filter to handle multiple data associations work satisfactorily in the simple case of point targets, but do not extend naturally to continuous curves. A new, stochastic algorithm is proposed here, the Condensation algorithm --- Conditional

Laplacian eigenmaps and spectral techniques for embedding and clustering.

by Mikhail Belkin , Partha Niyogi - Proceeding of Neural Information Processing Systems, , 2001
"... Abstract Drawing on the correspondence between the graph Laplacian, the Laplace-Beltrami op erator on a manifold , and the connections to the heat equation , we propose a geometrically motivated algorithm for constructing a representation for data sampled from a low dimensional manifold embedded in ..."
Abstract - Cited by 668 (7 self) - Add to MetaCart
of t he same object is the number of degrees of freedom of the camera -in fact the space has the natural structure of a manifold embedded in rn: n2 . While there is a large body of work on dimensionality reduction in general, most existing approaches do not explicitly take into account the structure

A survey on visual surveillance of object motion and behaviors

by Weiming Hu, Tieniu Tan, Liang Wang, Steve Maybank - IEEE Transactions on Systems, Man and Cybernetics , 2004
"... Abstract—Visual surveillance in dynamic scenes, especially for humans and vehicles, is currently one of the most active research topics in computer vision. It has a wide spectrum of promising applications, including access control in special areas, human identification at a distance, crowd flux stat ..."
Abstract - Cited by 439 (6 self) - Add to MetaCart
objects, tracking, understanding and description of behaviors, human identification, and fusion of data from multiple cameras. We review recent developments and general strategies of all these stages. Finally, we analyze possible research directions, e.g., occlusion handling, a combination of twoand three

Natural Selection

by Belcher Christopher D. Williams , 1992
"... This study examined how middle science teachers perceive the textbooks they use and how their perceptions varied with their personal attributes and professional backgrounds. A questionnaire was sent to 79 middle school science teachers in Missouri, and 66 responded. The questionnaire was designed to ..."
Abstract - Cited by 461 (1 self) - Add to MetaCart
-mandated objectives. About 25 percent of respondents thought their text book did not provide activities that encouraged the student-as-the-worker or provided for active learning. It also appeared that teachers who had attended a national science conference within the previous 3 years approached their curriculum

Comparing Images Using the Hausdorff Distance

by Daniel P. Huttenlocher, Gregory A. Klanderman, William J. Rucklidge - IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE , 1993
"... The Hausdorff distance measures the extent to which each point of a `model' set lies near some point of an `image' set and vice versa. Thus this distance can be used to determine the degree of resemblance between two objects that are superimposed on one another. In this paper we provide ef ..."
Abstract - Cited by 659 (10 self) - Add to MetaCart
The Hausdorff distance measures the extent to which each point of a `model' set lies near some point of an `image' set and vice versa. Thus this distance can be used to determine the degree of resemblance between two objects that are superimposed on one another. In this paper we provide
Next 10 →
Results 1 - 10 of 112,331
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University