Results 1  10
of
35,289
SNOPT: An SQP Algorithm For LargeScale Constrained Optimization
, 2002
"... Sequential quadratic programming (SQP) methods have proved highly effective for solving constrained optimization problems with smooth nonlinear functions in the objective and constraints. Here we consider problems with general inequality constraints (linear and nonlinear). We assume that first deriv ..."
Abstract

Cited by 597 (24 self)
 Add to MetaCart
Sequential quadratic programming (SQP) methods have proved highly effective for solving constrained optimization problems with smooth nonlinear functions in the objective and constraints. Here we consider problems with general inequality constraints (linear and nonlinear). We assume that first
On the limited memory BFGS method for large scale optimization
 MATHEMATICAL PROGRAMMING
, 1989
"... ..."
A Data Locality Optimizing Algorithm
, 1991
"... This paper proposes an algorithm that improves the locality of a loop nest by transforming the code via interchange, reversal, skewing and tiling. The loop transformation algorithm is based on two concepts: a mathematical formulation of reuse and locality, and a loop transformation theory that unifi ..."
Abstract

Cited by 804 (16 self)
 Add to MetaCart
, and Givens QR factorization. Performance evaluation indicates that locality optimization is especially crucial for scaling up the performance of parallel code.
Making LargeScale SVM Learning Practical
, 1998
"... Training a support vector machine (SVM) leads to a quadratic optimization problem with bound constraints and one linear equality constraint. Despite the fact that this type of problem is well understood, there are many issues to be considered in designing an SVM learner. In particular, for large lea ..."
Abstract

Cited by 1861 (17 self)
 Add to MetaCart
Training a support vector machine (SVM) leads to a quadratic optimization problem with bound constraints and one linear equality constraint. Despite the fact that this type of problem is well understood, there are many issues to be considered in designing an SVM learner. In particular, for large
Automatically characterizing large scale program behavior
, 2002
"... Understanding program behavior is at the foundation of computer architecture and program optimization. Many programs have wildly different behavior on even the very largest of scales (over the complete execution of the program). This realization has ramifications for many architectural and compile ..."
Abstract

Cited by 778 (41 self)
 Add to MetaCart
Understanding program behavior is at the foundation of computer architecture and program optimization. Many programs have wildly different behavior on even the very largest of scales (over the complete execution of the program). This realization has ramifications for many architectural and com
The program dependence graph and its use in optimization
 ACM Transactions on Programming Languages and Systems
, 1987
"... In this paper we present an intermediate program representation, called the program dependence graph (PDG), that makes explicit both the data and control dependence5 for each operation in a program. Data dependences have been used to represent only the relevant data flow relationships of a program. ..."
Abstract

Cited by 996 (3 self)
 Add to MetaCart
incremental optimization, permitting transformations to be triggered by one another and applied only to affected dependences.
Making LargeScale Support Vector Machine Learning Practical
, 1998
"... Training a support vector machine (SVM) leads to a quadratic optimization problem with bound constraints and one linear equality constraint. Despite the fact that this type of problem is well understood, there are many issues to be considered in designing an SVM learner. In particular, for large lea ..."
Abstract

Cited by 628 (1 self)
 Add to MetaCart
Training a support vector machine (SVM) leads to a quadratic optimization problem with bound constraints and one linear equality constraint. Despite the fact that this type of problem is well understood, there are many issues to be considered in designing an SVM learner. In particular, for large
Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones
, 1998
"... SeDuMi is an addon for MATLAB, that lets you solve optimization problems with linear, quadratic and semidefiniteness constraints. It is possible to have complex valued data and variables in SeDuMi. Moreover, large scale optimization problems are solved efficiently, by exploiting sparsity. This pape ..."
Abstract

Cited by 1368 (5 self)
 Add to MetaCart
SeDuMi is an addon for MATLAB, that lets you solve optimization problems with linear, quadratic and semidefiniteness constraints. It is possible to have complex valued data and variables in SeDuMi. Moreover, large scale optimization problems are solved efficiently, by exploiting sparsity
Storage management and caching in PAST, a largescale, persistent peertopeer storage utility
, 2001
"... This paper presents and evaluates the storage management and caching in PAST, a largescale peertopeer persistent storage utility. PAST is based on a selforganizing, Internetbased overlay network of storage nodes that cooperatively route file queries, store multiple replicas of files, and cache a ..."
Abstract

Cited by 803 (23 self)
 Add to MetaCart
This paper presents and evaluates the storage management and caching in PAST, a largescale peertopeer persistent storage utility. PAST is based on a selforganizing, Internetbased overlay network of storage nodes that cooperatively route file queries, store multiple replicas of files, and cache
ATOMIC DECOMPOSITION BY BASIS PURSUIT
, 1995
"... The TimeFrequency and TimeScale communities have recently developed a large number of overcomplete waveform dictionaries  stationary wavelets, wavelet packets, cosine packets, chirplets, and warplets, to name a few. Decomposition into overcomplete systems is not unique, and several methods for d ..."
Abstract

Cited by 2728 (61 self)
 Add to MetaCart
variation denoising, and multiscale edge denoising. Basis Pursuit in highly overcomplete dictionaries leads to largescale optimization problems. With signals of length 8192 and a wavelet packet dictionary, one gets an equivalent linear program of size 8192 by 212,992. Such problems can be attacked
Results 1  10
of
35,289