Results 1  10
of
2,436
Loopy belief propagation for approximate inference: An empirical study. In:
 Proceedings of Uncertainty in AI,
, 1999
"... Abstract Recently, researchers have demonstrated that "loopy belief propagation" the use of Pearl's polytree algorithm in a Bayesian network with loops can perform well in the context of errorcorrecting codes. The most dramatic instance of this is the near Shannonlimit performanc ..."
Abstract

Cited by 676 (15 self)
 Add to MetaCart
. Introduction The task of calculating posterior marginals on nodes in an arbitrary Bayesian network is known to be NP hard In this paper we investigate the approximation performance of "loopy belief propagation". This refers to using the wellknown Pearl polytree algorithm [12] on a Bayesian network
Learning to Order Things
 Journal of Artificial Intelligence Research
, 1998
"... There are many applications in which it is desirable to order rather than classify instances. Here we consider the problem of learning how to order, given feedback in the form of preference judgments, i.e., statements to the effect that one instance should be ranked ahead of another. We outline a ..."
Abstract

Cited by 409 (12 self)
 Add to MetaCart
There are many applications in which it is desirable to order rather than classify instances. Here we consider the problem of learning how to order, given feedback in the form of preference judgments, i.e., statements to the effect that one instance should be ranked ahead of another. We outline
MaxMin DCluster Formation in Wireless Ad Hoc Networks
 IN PROCEEDINGS OF IEEE INFOCOM
, 2000
"... An ad hoc network may be logically represented as a set of clusters. The clusterheads form a dhop dominating set. Each node is at most d hops from a clusterhead. Clusterheads form a virtual backbone and may be used to route packets for nodes in their cluster. Previous heuristics restricted themselv ..."
Abstract

Cited by 268 (4 self)
 Add to MetaCart
themselves to 1hop clusters. We show that the minimum dhop dominating set problem is NPcomplete. Then we present a heuristic to form dclusters in a wireless ad hoc network. Nodes are assumed to have nondeterministic mobility pattern. Clusters are formed by diffusing node identities along the wireless
Sparse solution of underdetermined linear equations by stagewise orthogonal matching pursuit
, 2006
"... Finding the sparsest solution to underdetermined systems of linear equations y = Φx is NPhard in general. We show here that for systems with ‘typical’/‘random ’ Φ, a good approximation to the sparsest solution is obtained by applying a fixed number of standard operations from linear algebra. Our pr ..."
Abstract

Cited by 274 (22 self)
 Add to MetaCart
Finding the sparsest solution to underdetermined systems of linear equations y = Φx is NPhard in general. We show here that for systems with ‘typical’/‘random ’ Φ, a good approximation to the sparsest solution is obtained by applying a fixed number of standard operations from linear algebra. Our
Hard and Easy Distributions of SAT Problems
, 1992
"... We report results from largescale experiments in satisfiability testing. As has been observed by others, testing the satisfiability of random formulas often appears surprisingly easy. Here we show that by using the right distribution of instances, and appropriate parameter values, it is possible to ..."
Abstract

Cited by 255 (20 self)
 Add to MetaCart
at all, can be shown to be NPhard in their most general form. However, there is fundamental disagreement, at least within the AI community, about the implications of this. It is claimed on the one hand that since the performance of algorithms designed to solve NPhard tasks degrades rapidly with small
Which Problems Have Strongly Exponential Complexity?
 Journal of Computer and System Sciences
, 1998
"... For several NPcomplete problems, there have been a progression of better but still exponential algorithms. In this paper, we address the relative likelihood of subexponential algorithms for these problems. We introduce a generalized reduction which we call SubExponential Reduction Family (SERF) t ..."
Abstract

Cited by 242 (11 self)
 Add to MetaCart
For several NPcomplete problems, there have been a progression of better but still exponential algorithms. In this paper, we address the relative likelihood of subexponential algorithms for these problems. We introduce a generalized reduction which we call SubExponential Reduction Family (SERF
Sparse subspace clustering
 In CVPR
, 2009
"... We propose a method based on sparse representation (SR) to cluster data drawn from multiple lowdimensional linear or affine subspaces embedded in a highdimensional space. Our method is based on the fact that each point in a union of subspaces has a SR with respect to a dictionary formed by all oth ..."
Abstract

Cited by 241 (14 self)
 Add to MetaCart
We propose a method based on sparse representation (SR) to cluster data drawn from multiple lowdimensional linear or affine subspaces embedded in a highdimensional space. Our method is based on the fact that each point in a union of subspaces has a SR with respect to a dictionary formed by all
The induction of dynamical recognizers
 Machine Learning
, 1991
"... A higher order recurrent neural network architecture learns to recognize and generate languages after being "trained " on categorized exemplars. Studying these networks from the perspective of dynamical systems yields two interesting discoveries: First, a longitudinal examination of the le ..."
Abstract

Cited by 225 (14 self)
 Add to MetaCart
of the learning process illustrates a new form of mechanical inference: Induction by phase transition. A small weight adjustment causes a "bifurcation" in the limit behavior of the network. This phase transition corresponds to the onset of the network’s capacity for generalizing to arbitrary
Greedy strikes back: Improved facility location algorithms
 Journal of Algorithms
, 1999
"... A fundamental facility location problem is to choose the location of facilities, such as industrial plants and warehouses, to minimize the cost of satisfying the demand for some commodity. There are associated costs for locating the facilities, as well as transportation costs for distributing the co ..."
Abstract

Cited by 210 (11 self)
 Add to MetaCart
the commodities. We assume that the transportation costs form a metric. This problem is commonly referred to as the uncapacitated facility location (UFL) problem. Applications to bank account location and clustering, as well as many related pieces of work, are discussed by Cornuejols, Nemhauser and Wolsey [2
Combinatorial Auctions with Decreasing Marginal Utilities
, 2001
"... This paper considers combinatorial auctions among such submodular buyers. The valuations of such buyers are placed within a hierarchy of valuations that exhibit no complementarities, a hierarchy that includes also OR and XOR combinations of singleton valuations, and valuations satisfying the gross s ..."
Abstract

Cited by 202 (25 self)
 Add to MetaCart
substitutes property. Those last valuations are shown to form a zeromeasure subset of the submodular valuations that have positive measure. While we show that the allocation problem among submodular valuations is NPhard, we present an efficient greedy 2approximation algorithm for this case and generalize
Results 1  10
of
2,436