Results 1  10
of
7,033
Minimax Programs
 University of California Press
, 1997
"... We introduce an optimization problem called a minimax program that is similar to a linear program, except that the addition operator is replaced in the constraint equations by the maximum operator. We clarify the relation of this problem to some betterknown problems. We identify an interesting spec ..."
Abstract

Cited by 482 (5 self)
 Add to MetaCart
special case and present an efficient algorithm for its solution. 1 Introduction Over the last fifty years, thousands of problems of practical interest have been formulated as a linear program. Not only has the linear programming model proven to be widely applicable, but ongoing research has discovered
Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems
 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING
, 2007
"... Many problems in signal processing and statistical inference involve finding sparse solutions to underdetermined, or illconditioned, linear systems of equations. A standard approach consists in minimizing an objective function which includes a quadratic (squared ℓ2) error term combined with a spa ..."
Abstract

Cited by 539 (17 self)
 Add to MetaCart
constrained quadratic programming (BCQP) formulation of these problems. We test variants of this approach that select the line search parameters in different ways, including techniques based on the BarzilaiBorwein method. Computational experiments show that these GP approaches perform well in a wide range
Benchmarking Least Squares Support Vector Machine Classifiers
 NEURAL PROCESSING LETTERS
, 2001
"... In Support Vector Machines (SVMs), the solution of the classification problem is characterized by a (convex) quadratic programming (QP) problem. In a modified version of SVMs, called Least Squares SVM classifiers (LSSVMs), a least squares cost function is proposed so as to obtain a linear set of eq ..."
Abstract

Cited by 476 (46 self)
 Add to MetaCart
In Support Vector Machines (SVMs), the solution of the classification problem is characterized by a (convex) quadratic programming (QP) problem. In a modified version of SVMs, called Least Squares SVM classifiers (LSSVMs), a least squares cost function is proposed so as to obtain a linear set
Multiple kernel learning, conic duality, and the SMO algorithm
 In Proceedings of the 21st International Conference on Machine Learning (ICML
, 2004
"... While classical kernelbased classifiers are based on a single kernel, in practice it is often desirable to base classifiers on combinations of multiple kernels. Lanckriet et al. (2004) considered conic combinations of kernel matrices for the support vector machine (SVM), and showed that the optimiz ..."
Abstract

Cited by 445 (31 self)
 Add to MetaCart
; moreover, the sequential minimal optimization (SMO) techniques that are essential in largescale implementations of the SVM cannot be applied because the cost function is nondifferentiable. We propose a novel dual formulation of the QCQP as a secondorder cone programming problem, and show how to exploit
Logic Programming in a Fragment of Intuitionistic Linear Logic
, 1994
"... When logic programming is based on the proof theory of intuitionistic logic, it is natural to allow implications in goals and in the bodies of clauses. Attempting to prove a goal of the form D ⊃ G from the context (set of formulas) Γ leads to an attempt to prove the goal G in the extended context Γ ..."
Abstract

Cited by 340 (44 self)
 Add to MetaCart
if they are based on linear logic. After presenting two equivalent formulations of a fragment of linear logic, we show that the fragment has a goaldirected interpretation, thereby partially justifying calling it a logic programming language. Logic programs based on the intuitionistic theory of hereditary Harrop
Large scale multiple kernel learning
 JOURNAL OF MACHINE LEARNING RESEARCH
, 2006
"... While classical kernelbased learning algorithms are based on a single kernel, in practice it is often desirable to use multiple kernels. Lanckriet et al. (2004) considered conic combinations of kernel matrices for classification, leading to a convex quadratically constrained quadratic program. We s ..."
Abstract

Cited by 340 (20 self)
 Add to MetaCart
show that it can be rewritten as a semiinfinite linear program that can be efficiently solved by recycling the standard SVM implementations. Moreover, we generalize the formulation and our method to a larger class of problems, including regression and oneclass classification. Experimental results
Robust Linear Programming Discrimination Of Two Linearly Inseparable Sets
, 1992
"... INTRODUCTION We consider the two pointsets A and B in the ndimensional real space R n represented by the m \Theta n matrix A and the k \Theta n matrix B respectively. Our principal objective here is to formulate a single linear program with the following properties: (i) If the convex hulls of A ..."
Abstract

Cited by 239 (32 self)
 Add to MetaCart
INTRODUCTION We consider the two pointsets A and B in the ndimensional real space R n represented by the m \Theta n matrix A and the k \Theta n matrix B respectively. Our principal objective here is to formulate a single linear program with the following properties: (i) If the convex hulls
Smodels  an Implementation of the Stable Model and WellFounded Semantics for Normal Logic Programs
, 1997
"... The Smodels system is a C++ implementation of the wellfounded and stable model semantics for rangerestricted functionfree normal programs. The system includes two modules: (i) smodels which implements the two semantics for ground programs and (ii) parse which computes a grounded version of a range ..."
Abstract

Cited by 294 (9 self)
 Add to MetaCart
up backtracking search where a powerful pruning method is employed. The pruning method exploits an approximation technique for stable models which is closely related to the wellfounded semantics. One of the advantages of this novel technique is that it can be implemented to work in linear space. This makes
Support vector machines for multipleinstance learning
 Advances in Neural Information Processing Systems 15
, 2003
"... This paper presents two new formulations of multipleinstance learning as a maximum margin problem. The proposed extensions of the Support Vector Machine (SVM) learning approach lead to mixed integer quadratic programs that can be solved heuristically. Our generalization of SVMs makes a stateofthe ..."
Abstract

Cited by 314 (2 self)
 Add to MetaCart
This paper presents two new formulations of multipleinstance learning as a maximum margin problem. The proposed extensions of the Support Vector Machine (SVM) learning approach lead to mixed integer quadratic programs that can be solved heuristically. Our generalization of SVMs makes a state
The Space of Human Body Shapes: Reconstruction And Parameterization from Range Scans
 ACM TRANS. GRAPH
, 2003
"... We develop a novel method for fitting highresolution template meshes to detailed human body range scans with sparse 3D markers. We formulate an optimization problem in which the degrees of freedom are an affine transformation at each template vertex. The objective function is a weighted combination ..."
Abstract

Cited by 290 (4 self)
 Add to MetaCart
We develop a novel method for fitting highresolution template meshes to detailed human body range scans with sparse 3D markers. We formulate an optimization problem in which the degrees of freedom are an affine transformation at each template vertex. The objective function is a weighted
Results 1  10
of
7,033