• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 7,646
Next 10 →

Class-specific, top-down segmentation

by Eran Borenstein, Shimon Ullman - In ECCV , 2002
"... Abstract. In this paper we present a novel class-based segmentation method, which is guided by a stored representation of the shape of ob-jects within a general class (such as horse images). The approach is dif-ferent from bottom-up segmentation methods that primarily use the con-tinuity of grey-lev ..."
Abstract - Cited by 210 (4 self) - Add to MetaCart
Abstract. In this paper we present a novel class-based segmentation method, which is guided by a stored representation of the shape of ob-jects within a general class (such as horse images). The approach is dif-ferent from bottom-up segmentation methods that primarily use the con-tinuity of grey

Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm

by Yongyue Zhang, Michael Brady, Stephen Smith - IEEE TRANSACTIONS ON MEDICAL. IMAGING , 2001
"... The finite mixture (FM) model is the most commonly used model for statistical segmentation of brain magnetic resonance (MR) images because of its simple mathematical form and the piecewise constant nature of ideal brain MR images. However, being a histogram-based model, the FM has an intrinsic limi ..."
Abstract - Cited by 639 (15 self) - Add to MetaCart
methods are limited to using MRF as a general prior in an FM model-based approach. To fit the HMRF model, an EM algorithm is used. We show that by incorporating both the HMRF model and the EM algorithm into a HMRF-EM framework, an accurate and robust segmentation can be achieved. More importantly

Comparison of discrimination methods for the classification of tumors using gene expression data

by Sandrine Dudoit, Jane Fridlyand, Terence P. Speed - JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION , 2002
"... A reliable and precise classification of tumors is essential for successful diagnosis and treatment of cancer. cDNA microarrays and high-density oligonucleotide chips are novel biotechnologies increasingly used in cancer research. By allowing the monitoring of expression levels in cells for thousand ..."
Abstract - Cited by 770 (6 self) - Add to MetaCart
gene expression data is an important aspect of this novel approach to cancer classification. This article compares the performance of different discrimination methods for the classification of tumors based on gene expression data. The methods include nearest-neighbor classifiers, linear discriminant

Visual categorization with bags of keypoints

by Gabriella Csurka, Christopher R. Dance, Lixin Fan, Jutta Willamowski, Cédric Bray - In Workshop on Statistical Learning in Computer Vision, ECCV , 2004
"... Abstract. We present a novel method for generic visual categorization: the problem of identifying the object content of natural images while generalizing across variations inherent to the object class. This bag of keypoints method is based on vector quantization of affine invariant descriptors of im ..."
Abstract - Cited by 1005 (14 self) - Add to MetaCart
Abstract. We present a novel method for generic visual categorization: the problem of identifying the object content of natural images while generalizing across variations inherent to the object class. This bag of keypoints method is based on vector quantization of affine invariant descriptors

Probabilistic Latent Semantic Analysis

by Thomas Hofmann - In Proc. of Uncertainty in Artificial Intelligence, UAI’99 , 1999
"... Probabilistic Latent Semantic Analysis is a novel statistical technique for the analysis of two--mode and co-occurrence data, which has applications in information retrieval and filtering, natural language processing, machine learning from text, and in related areas. Compared to standard Latent Sema ..."
Abstract - Cited by 771 (9 self) - Add to MetaCart
Semantic Analysis which stems from linear algebra and performs a Singular Value Decomposition of co-occurrence tables, the proposed method is based on a mixture decomposition derived from a latent class model. This results in a more principled approach which has a solid foundation in statistics. In order

Nonparametric model for background subtraction

by Ahmed Elgammal, David Harwood, Larry Davis - in ECCV ’00 , 2000
"... Abstract. Background subtraction is a method typically used to seg-ment moving regions in image sequences taken from a static camera by comparing each new frame to a model of the scene background. We present a novel non-parametric background model and a background subtraction approach. The model can ..."
Abstract - Cited by 545 (17 self) - Add to MetaCart
Abstract. Background subtraction is a method typically used to seg-ment moving regions in image sequences taken from a static camera by comparing each new frame to a model of the scene background. We present a novel non-parametric background model and a background subtraction approach. The model

Combined Object Categorization and Segmentation With An Implicit Shape Model

by Bastian Leibe, Ales Leonardis, Bernt Schiele - In ECCV workshop on statistical learning in computer vision , 2004
"... We present a method for object categorization in real-world scenes. Following a common consensus in the field, we do not assume that a figure-ground segmentation is available prior to recognition. However, in contrast to most standard approaches for object class recognition, our approach automatical ..."
Abstract - Cited by 406 (10 self) - Add to MetaCart
We present a method for object categorization in real-world scenes. Following a common consensus in the field, we do not assume that a figure-ground segmentation is available prior to recognition. However, in contrast to most standard approaches for object class recognition, our approach

CATH -- a hierarchic classification of protein domain structures

by C A Orengo, A D Michie, S Jones, D T Jones, M B Swindells, J M Thornton - STRUCTURE , 1997
"... Background: Protein evolution gives rise to families of structurally related proteins, within which sequence identities can be extremely low. As a result, structure-based classifications can be effective at identifying unanticipated relationships in known structures and in optimal cases function can ..."
Abstract - Cited by 470 (33 self) - Add to MetaCart
can also be assigned. The ever increasing number of known protein structures is too large to classify all proteins manually, therefore, automatic methods are needed for fast evaluation of protein structures. Results: We present a semi-automatic procedure for deriving a novel hierarchical

Random walks for image segmentation

by Leo Grady - IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE , 2006
"... A novel method is proposed for performing multilabel, interactive image segmentation. Given a small number of pixels with user-defined (or predefined) labels, one can analytically and quickly determine the probability that a random walker starting at each unlabeled pixel will first reach one of the ..."
Abstract - Cited by 387 (21 self) - Add to MetaCart
A novel method is proposed for performing multilabel, interactive image segmentation. Given a small number of pixels with user-defined (or predefined) labels, one can analytically and quickly determine the probability that a random walker starting at each unlabeled pixel will first reach one

TextonBoost: Joint Appearance, Shape and Context Modeling for Multi-Class Object . . .

by J. Shotton, J. Winn, C. Rother, A. Criminisi - IN ECCV , 2006
"... This paper proposes a new approach to learning a discriminative model of object classes, incorporating appearance, shape and context information efficiently. The learned model is used for automatic visual recognition and semantic segmentation of photographs. Our discriminative model exploits nov ..."
Abstract - Cited by 426 (17 self) - Add to MetaCart
novel features, based on textons, which jointly model shape and texture. Unary classification and feature selection is achieved using shared boosting to give an efficient classifier which can be applied to a large number of classes. Accurate image segmentation is achieved by incorporating
Next 10 →
Results 1 - 10 of 7,646
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University