Results 1  10
of
16,262
A HeteroskedasticityConsistent Covariance Matrix Estimator And A Direct Test For Heteroskedasticity
, 1980
"... This paper presents a parameter covariance matrix estimator which is consistent even when the disturbances of a linear regression model are heteroskedastic. This estimator does not depend on a formal model of the structure of the heteroskedasticity. By comparing the elements of the new estimator ..."
Abstract

Cited by 3211 (5 self)
 Add to MetaCart
This paper presents a parameter covariance matrix estimator which is consistent even when the disturbances of a linear regression model are heteroskedastic. This estimator does not depend on a formal model of the structure of the heteroskedasticity. By comparing the elements of the new estimator
Stable signal recovery from incomplete and inaccurate measurements,”
 Comm. Pure Appl. Math.,
, 2006
"... Abstract Suppose we wish to recover a vector x 0 ∈ R m (e.g., a digital signal or image) from incomplete and contaminated observations y = Ax 0 + e; A is an n × m matrix with far fewer rows than columns (n m) and e is an error term. Is it possible to recover x 0 accurately based on the data y? To r ..."
Abstract

Cited by 1397 (38 self)
 Add to MetaCart
, suppose that A is a Gaussian random matrix; then stable recovery occurs for almost all such A's provided that the number of nonzeros of x 0 is of about the same order as the number of observations. As a second instance, suppose one observes few Fourier samples of x 0 ; then stable recovery occurs
For Most Large Underdetermined Systems of Linear Equations the Minimal ℓ1norm Solution is also the Sparsest Solution
 Comm. Pure Appl. Math
, 2004
"... We consider linear equations y = Φα where y is a given vector in R n, Φ is a given n by m matrix with n < m ≤ An, and we wish to solve for α ∈ R m. We suppose that the columns of Φ are normalized to unit ℓ 2 norm 1 and we place uniform measure on such Φ. We prove the existence of ρ = ρ(A) so that ..."
Abstract

Cited by 568 (10 self)
 Add to MetaCart
We consider linear equations y = Φα where y is a given vector in R n, Φ is a given n by m matrix with n < m ≤ An, and we wish to solve for α ∈ R m. We suppose that the columns of Φ are normalized to unit ℓ 2 norm 1 and we place uniform measure on such Φ. We prove the existence of ρ = ρ(A) so
Closedform solution of absolute orientation using unit quaternions
 J. Opt. Soc. Am. A
, 1987
"... Finding the relationship between two coordinate systems using pairs of measurements of the coordinates of a number of points in both systems is a classic photogrammetric task. It finds applications in stereophotogrammetry and in robotics. I present here a closedform solution to the leastsquares pr ..."
Abstract

Cited by 989 (4 self)
 Add to MetaCart
. These exact results are to be preferred to approximate methods based on measurements of a few selected points. The unit quaternion representing the best rotation is the eigenvector associated with the most positive eigenvalue of a symmetric 4 X 4 matrix. The elements of this matrix are combinations of sums
The Dantzig selector: statistical estimation when p is much larger than n
, 2005
"... In many important statistical applications, the number of variables or parameters p is much larger than the number of observations n. Suppose then that we have observations y = Ax + z, where x ∈ R p is a parameter vector of interest, A is a data matrix with possibly far fewer rows than columns, n ≪ ..."
Abstract

Cited by 879 (14 self)
 Add to MetaCart
In many important statistical applications, the number of variables or parameters p is much larger than the number of observations n. Suppose then that we have observations y = Ax + z, where x ∈ R p is a parameter vector of interest, A is a data matrix with possibly far fewer rows than columns, n
Lincs: A linear constraint solver for molecular simulations
 J. Comput. Chem
, 1997
"... .LINCS for molecular simulations with bond constraints. The algorithm is inherently stable, as the constraints themselves are reset instead of derivatives of the constraints, thereby eliminating drift. Although the derivation of the algorithm is presented in terms of matrices, no matrix matrix multi ..."
Abstract

Cited by 303 (1 self)
 Add to MetaCart
multiplications are needed and only the nonzero matrix elements have to be stored, making the method useful for very large molecules. At the same accuracy, the LINCS algorithm is three to four times faster than the SHAKE algorithm. Parallelization
From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images
, 2007
"... A fullrank matrix A ∈ IR n×m with n < m generates an underdetermined system of linear equations Ax = b having infinitely many solutions. Suppose we seek the sparsest solution, i.e., the one with the fewest nonzero entries: can it ever be unique? If so, when? As optimization of sparsity is combin ..."
Abstract

Cited by 427 (36 self)
 Add to MetaCart
A fullrank matrix A ∈ IR n×m with n < m generates an underdetermined system of linear equations Ax = b having infinitely many solutions. Suppose we seek the sparsest solution, i.e., the one with the fewest nonzero entries: can it ever be unique? If so, when? As optimization of sparsity
A rapid hierarchical radiosity algorithm
 Computer Graphics
, 1991
"... This paper presents a rapid hierarchical radiosity algorithm for illuminating scenes containing lar e polygonal patches. The afgorithm constructs a hierarchic“J representation of the form factor matrix by adaptively subdividing patches into su bpatches according to a usersupplied error bound. The a ..."
Abstract

Cited by 409 (11 self)
 Add to MetaCart
. The algorithm guarantees that all form factors are calculated to the same precision, removing many common image artifacts due to inaccurate form factors. More importantly, the al orithm decomposes the form factor matrix into at most O? n) blocks (where n is the number of elements). Previous radiosity
Online learning for matrix factorization and sparse coding
, 2010
"... Sparse coding—that is, modelling data vectors as sparse linear combinations of basis elements—is widely used in machine learning, neuroscience, signal processing, and statistics. This paper focuses on the largescale matrix factorization problem that consists of learning the basis set in order to ad ..."
Abstract

Cited by 330 (31 self)
 Add to MetaCart
Sparse coding—that is, modelling data vectors as sparse linear combinations of basis elements—is widely used in machine learning, neuroscience, signal processing, and statistics. This paper focuses on the largescale matrix factorization problem that consists of learning the basis set in order
Trading Group Theory for Randomness
, 1985
"... In a previous paper [BS] we proved, using the elements of the Clwory of nilyotenf yroupu, that some of the /undamcnla1 computational problems in mat & proup, belong to NP. These problems were also ahown to belong to CONP, assuming an unproven hypofhedi.9 concerning finilc simple Q ’ oup,. The a ..."
Abstract

Cited by 353 (9 self)
 Add to MetaCart
In a previous paper [BS] we proved, using the elements of the Clwory of nilyotenf yroupu, that some of the /undamcnla1 computational problems in mat & proup, belong to NP. These problems were also ahown to belong to CONP, assuming an unproven hypofhedi.9 concerning finilc simple Q ’ oup
Results 1  10
of
16,262