Results 1  10
of
81,809
Monotone Complexity
, 1990
"... We give a general complexity classification scheme for monotone computation, including monotone spacebounded and Turing machine models not previously considered. We propose monotone complexity classes including mAC i , mNC i , mLOGCFL, mBWBP , mL, mNL, mP , mBPP and mNP . We define a simple ..."
Abstract

Cited by 2821 (11 self)
 Add to MetaCart
;enyi's nonmonotone result [Imm88, Sze87] that NL = coNL; this is a simple extension of the monotone circuit depth lower bound of Karchmer and Wigderson [KW90] for stconnectivity. We also consider mBWBP (monotone bounded width branching programs) and study the question of whether mBWBP is properly contained
On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and nperson games
 Artificial Intelligence
, 1995
"... The purpose of this paper is to study the fundamental mechanism humans use in argumentation and its role in different major approaches to commonsense reasoning in AI and logic programming. We present three novel results: We develop a theory for argumentation in which the acceptability of arguments i ..."
Abstract

Cited by 1197 (12 self)
 Add to MetaCart
is precisely defined. We show that logic programming and nonmonotonic reasoning in AI are different forms of argumentation. We show that argumentation can be viewed as a special form of logic programming with negation as failure. This result introduces a general method for generating metainterpreters
The Extended Linear Complementarity Problem
, 1993
"... We consider an extension of the horizontal linear complementarity problem, which we call the extended linear complementarity problem (XLCP). With the aid of a natural bilinear program, we establish various properties of this extended complementarity problem; these include the convexity of the biline ..."
Abstract

Cited by 785 (30 self)
 Add to MetaCart
of the bilinear objective function under a monotonicity assumption, the polyhedrality of the solution set of a monotone XLCP, and an error bound result for a nondegenerate XLCP. We also present a finite, sequential linear programming algorithm for solving the nonmonotone XLCP.
Using Maimonides’ Rule to Estimate the Effect of Class Size on Scholastic Achievement
 QUARTERLY JOURNAL OF ECONOMICS
, 1999
"... The twelfth century rabbinic scholar Maimonides proposed a maximum class size of 40. This same maximum induces a nonlinear and nonmonotonic relationship between grade enrollment and class size in Israeli public schools today. Maimonides’ rule of 40 is used here to construct instrumental variables e ..."
Abstract

Cited by 582 (40 self)
 Add to MetaCart
The twelfth century rabbinic scholar Maimonides proposed a maximum class size of 40. This same maximum induces a nonlinear and nonmonotonic relationship between grade enrollment and class size in Israeli public schools today. Maimonides’ rule of 40 is used here to construct instrumental variables
A Theory of Diagnosis from First Principles
 ARTIFICIAL INTELLIGENCE
, 1987
"... Suppose one is given a description of a system, together with an observation of the system's behaviour which conflicts with the way the system is meant to behave. The diagnostic problem is to determine those components of the system which, when assumed to be functioning abnormally, will explain ..."
Abstract

Cited by 1119 (5 self)
 Add to MetaCart
, will explain the discrepancy between the observed and correct system behaviour. We propose a general theory for this problem. The theory requires only that the system be described in a suitable logic. Moreover, there are many such suitable logics, e.g. firstorder, temporal, dynamic, etc. As a result
Nonmonotone spectral projected gradient methods on convex sets
 SIAM Journal on Optimization
, 2000
"... Abstract. Nonmonotone projected gradient techniques are considered for the minimization of differentiable functions on closed convex sets. The classical projected gradient schemes are extended to include a nonmonotone steplength strategy that is based on the Grippo–Lampariello–Lucidi nonmonotone lin ..."
Abstract

Cited by 216 (29 self)
 Add to MetaCart
Abstract. Nonmonotone projected gradient techniques are considered for the minimization of differentiable functions on closed convex sets. The classical projected gradient schemes are extended to include a nonmonotone steplength strategy that is based on the Grippo–Lampariello–Lucidi nonmonotone
The PATH Solver: A NonMonotone Stabilization Scheme for Mixed Complementarity Problems
 OPTIMIZATION METHODS AND SOFTWARE
, 1995
"... The Path solver is an implementation of a stabilized Newton method for the solution of the Mixed Complementarity Problem. The stabilization scheme employs a pathgeneration procedure which is used to construct a piecewiselinear path from the current point to the Newton point; a step length acceptan ..."
Abstract

Cited by 213 (40 self)
 Add to MetaCart
acceptance criterion and a nonmonotone pathsearch are then used to choose the next iterate. The algorithm is shown to be globally convergent under assumptions which generalize those required to obtain similar results in the smooth case. Several implementation issues are discussed, and extensive
Nonmonotonic Reasoning in the Framework of Situation Calculus
 Artificial Intelligence
, 1991
"... Most of the solutions proposed to the Yale shooting problem have either introduced new nonmonotonic reasoning methods (generally involving temporal priorities) or completely reformulated the domain axioms to represent causality explicitly. This paper presents a new solution based on the idea that si ..."
Abstract

Cited by 145 (0 self)
 Add to MetaCart
Most of the solutions proposed to the Yale shooting problem have either introduced new nonmonotonic reasoning methods (generally involving temporal priorities) or completely reformulated the domain axioms to represent causality explicitly. This paper presents a new solution based on the idea
Nonmonotonic logic II: nonmonotonic modal theories
 Journal of the ACM
, 1982
"... ABSTRACT Tradmonal logics suffer from the "monotomclty problem"' new axioms never mvahdate old theorems One way to get nd of this problem ts to extend traditional modal logic in the following way The operator M (usually read "possible") is extended so that Mp is true whenev ..."
Abstract

Cited by 104 (1 self)
 Add to MetaCart
whenever p is consistent with the theory Then any theorem of this form may be mvahdated if ~p ~s added as an axiom This extension results m nonmonotomc versions of the systems T, $4, and $5 These systems are complete in that a theorem is provable in a theory based on one of them just if it is true m all
A Survey on Complexity Results for Nonmonotonic Logics
 Journal of Logic Programming
, 1993
"... This paper surveys the main results appeared in the literature on the computational complexity of nonmonotonic inference tasks. We not only give results about the tractability/intractability of the individual problems but we also analyze sources of complexity and explain intuitively the nature of e ..."
Abstract

Cited by 91 (6 self)
 Add to MetaCart
This paper surveys the main results appeared in the literature on the computational complexity of nonmonotonic inference tasks. We not only give results about the tractability/intractability of the individual problems but we also analyze sources of complexity and explain intuitively the nature
Results 1  10
of
81,809