Results 1 - 10
of
202,169
A New Method for Solving Hard Satisfiability Problems
- AAAI
, 1992
"... We introduce a greedy local search procedure called GSAT for solving propositional satisfiability problems. Our experiments show that this procedure can be used to solve hard, randomly generated problems that are an order of magnitude larger than those that can be handled by more traditional approac ..."
Abstract
-
Cited by 730 (21 self)
- Add to MetaCart
We introduce a greedy local search procedure called GSAT for solving propositional satisfiability problems. Our experiments show that this procedure can be used to solve hard, randomly generated problems that are an order of magnitude larger than those that can be handled by more traditional approaches such as the Davis-Putnam procedure or resolution. We also show that GSAT can solve structured satisfiability problems quickly. In particular, we solve encodings of graph coloring problems, N-queens, and Boolean induction. General application strategies and limitations of the approach are also discussed. GSAT is best viewed as a model-finding procedure. Its good performance suggests that it may be advantageous to reformulate reasoning tasks that have traditionally been viewed as theorem-proving problems as model-finding tasks.
Ensemble Methods in Machine Learning
- MULTIPLE CLASSIFIER SYSTEMS, LBCS-1857
, 2000
"... Ensemble methods are learning algorithms that construct a set of classifiers and then classify new data points by taking a (weighted) vote of their predictions. The original ensemble method is Bayesian averaging, but more recent algorithms include error-correcting output coding, Bagging, and boostin ..."
Abstract
-
Cited by 625 (3 self)
- Add to MetaCart
Ensemble methods are learning algorithms that construct a set of classifiers and then classify new data points by taking a (weighted) vote of their predictions. The original ensemble method is Bayesian averaging, but more recent algorithms include error-correcting output coding, Bagging
Boosting the margin: A new explanation for the effectiveness of voting methods
- IN PROCEEDINGS INTERNATIONAL CONFERENCE ON MACHINE LEARNING
, 1997
"... One of the surprising recurring phenomena observed in experiments with boosting is that the test error of the generated classifier usually does not increase as its size becomes very large, and often is observed to decrease even after the training error reaches zero. In this paper, we show that this ..."
Abstract
-
Cited by 897 (52 self)
- Add to MetaCart
that techniques used in the analysis of Vapnik’s support vector classifiers and of neural networks with small weights can be applied to voting methods to relate the margin distribution to the test error. We also show theoretically and experimentally that boosting is especially effective at increasing the margins
Suffix arrays: A new method for on-line string searches
, 1991
"... A new and conceptually simple data structure, called a suffix array, for on-line string searches is intro-duced in this paper. Constructing and querying suffix arrays is reduced to a sort and search paradigm that employs novel algorithms. The main advantage of suffix arrays over suffix trees is that ..."
Abstract
-
Cited by 835 (0 self)
- Add to MetaCart
A new and conceptually simple data structure, called a suffix array, for on-line string searches is intro-duced in this paper. Constructing and querying suffix arrays is reduced to a sort and search paradigm that employs novel algorithms. The main advantage of suffix arrays over suffix trees
UniFrac: a new phylogenetic method for comparing microbial communities
- APPL. ENVIRON
, 2005
"... ..."
The Hungarian method for the assignment problem
- Naval Res. Logist. Quart
, 1955
"... Assuming that numerical scores are available for the performance of each of n persons on each of n jobs, the "assignment problem" is the quest for an assignment of persons to jobs so that the sum of the n scores so obtained is as large as possible. It is shown that ideas latent in the work ..."
Abstract
-
Cited by 1259 (0 self)
- Add to MetaCart
in the work of two Hungarian mathematicians may be exploited to yield a new method of solving this problem. 1.
Discrete Choice Methods with Simulation
, 2002
"... This book describes the new generation of discrete choice meth-ods, focusing on the many advances that are made possible by simulation. Researchers use these statistical methods to examine the choices that consumers, households, firms, and other agents make. Each of the major models is covered: logi ..."
Abstract
-
Cited by 1326 (20 self)
- Add to MetaCart
This book describes the new generation of discrete choice meth-ods, focusing on the many advances that are made possible by simulation. Researchers use these statistical methods to examine the choices that consumers, households, firms, and other agents make. Each of the major models is covered
Learning to predict by the methods of temporal differences
- MACHINE LEARNING
, 1988
"... This article introduces a class of incremental learning procedures specialized for prediction – that is, for using past experience with an incompletely known system to predict its future behavior. Whereas conventional prediction-learning methods assign credit by means of the difference between predi ..."
Abstract
-
Cited by 1521 (56 self)
- Add to MetaCart
predicted and actual outcomes, the new methods assign credit by means of the difference between temporally successive predictions. Although such temporal-difference methods have been used in Samuel's checker player, Holland's bucket brigade, and the author's Adaptive Heuristic Critic
Experiments with a New Boosting Algorithm
, 1996
"... In an earlier paper, we introduced a new “boosting” algorithm called AdaBoost which, theoretically, can be used to significantly reduce the error of any learning algorithm that consistently generates classifiers whose performance is a little better than random guessing. We also introduced the relate ..."
Abstract
-
Cited by 2213 (20 self)
- Add to MetaCart
In an earlier paper, we introduced a new “boosting” algorithm called AdaBoost which, theoretically, can be used to significantly reduce the error of any learning algorithm that consistently generates classifiers whose performance is a little better than random guessing. We also introduced
Adaptive floating search methods in feature selection
- PATTERN RECOGNITION LETTERS
, 1999
"... A new suboptimal search strategy for feature selection is presented. It represents a more sophisticated version of "classical" floating search algorithms (Pudil et al., 1994), attempts to remove some of their potential deficiencies and facilitates finding a solution even closer to the opti ..."
Abstract
-
Cited by 548 (21 self)
- Add to MetaCart
A new suboptimal search strategy for feature selection is presented. It represents a more sophisticated version of "classical" floating search algorithms (Pudil et al., 1994), attempts to remove some of their potential deficiencies and facilitates finding a solution even closer
Results 1 - 10
of
202,169