• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 20,925
Next 10 →

Large steps in cloth simulation

by David Baraff, Andrew Witkin - SIGGRAPH 98 Conference Proceedings , 1998
"... The bottle-neck in most cloth simulation systems is that time steps must be small to avoid numerical instability. This paper describes a cloth simulation system that can stably take large time steps. The simulation system couples a new technique for enforcing constraints on individual cloth particle ..."
Abstract - Cited by 576 (5 self) - Add to MetaCart
as well. The implicit integration method generates a large, unbanded sparse linear system at each time step which is solved using a modified conjugate gradient method that simultaneously enforces particles ’ constraints. The constraints are always maintained exactly, independent of the number of conjugate

Factoring wavelet transforms into lifting steps

by Ingrid Daubechies, Wim Sweldens - J. FOURIER ANAL. APPL , 1998
"... This paper is essentially tutorial in nature. We show how any discrete wavelet transform or two band subband filtering with finite filters can be decomposed into a finite sequence of simple filtering steps, which we call lifting steps but that are also known as ladder structures. This decompositio ..."
Abstract - Cited by 584 (8 self) - Add to MetaCart
This paper is essentially tutorial in nature. We show how any discrete wavelet transform or two band subband filtering with finite filters can be decomposed into a finite sequence of simple filtering steps, which we call lifting steps but that are also known as ladder structures

Policy gradient methods for reinforcement learning with function approximation.

by Richard S Sutton , David Mcallester , Satinder Singh , Yishay Mansour - In NIPS, , 1999
"... Abstract Function approximation is essential to reinforcement learning, but the standard approach of approximating a value function and determining a policy from it has so far proven theoretically intractable. In this paper we explore an alternative approach in which the policy is explicitly repres ..."
Abstract - Cited by 439 (20 self) - Add to MetaCart
output is action selection probabilities, and whose weights are the policy parameters. Let θ denote the vector of policy parameters and ρ the performance of the corresponding policy (e.g., the average reward per step). Then, in the policy gradient approach, the policy parameters are updated approximately

A computational approach to edge detection

by John Canny - IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE , 1986
"... This paper describes a computational approach to edge detection. The success of the approach depends on the definition of a comprehensive set of goals for the computation of edge points. These goals must be precise enough to delimit the desired behavior of the detector while making minimal assumpti ..."
Abstract - Cited by 4675 (0 self) - Add to MetaCart
. We use the criteria in numerical optimization to derive detectors for several common image features, including step edges. On specializing the analysis to step edges, we find that there is a natural uncertainty principle between detection and localization performance, which are the two main goals

Nonlinear total variation based noise removal algorithms

by Leonid I. Rudin, Stanley Osher, Emad Fatemi , 1992
"... A constrained optimization type of numerical algorithm for removing noise from images is presented. The total variation of the image is minimized subject to constraints involving the statistics of the noise. The constraints are imposed using Lagrange multipliers. The solution is obtained using the g ..."
Abstract - Cited by 2271 (51 self) - Add to MetaCart
to be state-of-the-art for very noisy images. The method is noninvasive, yielding sharp edges in the image. The technique could be interpreted as a first step of moving each level set of the image normal to itself with velocity equal to the curvature of the level set divided by the magnitude of the gradient

A new learning algorithm for blind signal separation

by S. Amari, A. Cichocki, H. H. Yang - , 1996
"... A new on-line learning algorithm which minimizes a statistical de-pendency among outputs is derived for blind separation of mixed signals. The dependency is measured by the average mutual in-formation (MI) of the outputs. The source signals and the mixing matrix are unknown except for the number of ..."
Abstract - Cited by 622 (80 self) - Add to MetaCart
of the sources. The Gram-Charlier expansion instead of the Edgeworth expansion is used in evaluating the MI. The natural gradient approach is used to minimize the MI. A novel activation function is proposed for the on-line learning algorithm which has an equivariant property and is easily implemented on a neural

Fronts propagating with curvature dependent speed: algorithms based on Hamilton–Jacobi formulations

by Stanley Osher, James A. Sethian , 1988
"... We devise new numerical algorithms, called PSC algorithms, for following fronts propagating with curvature-dependent speed. The speed may be an arbitrary function of curvature, and the front also can be passively advected by an underlying flow. These algorithms approximate the equations of motion, w ..."
Abstract - Cited by 1183 (60 self) - Add to MetaCart
, which resemble Hamilton-Jacobi equations with parabolic right-hand sides, by using techniques from hyperbolic conservation laws. Nonoscillatory schemes of various orders of accuracy are used to solve the equations, providing methods that accurately capture the formation of sharp gradients and cusps

Rendering of Surfaces from Volume Data

by Marc Levoy - IEEE COMPUTER GRAPHICS AND APPLICATIONS , 1988
"... The application of volume rendering techniques to the display of surfaces from sampled scalar functions of three spatial dimensions is explored. Fitting of geometric primitives to the sampled data is not required. Images are formed by directly shading each sample and projecting it onto the picture ..."
Abstract - Cited by 875 (12 self) - Add to MetaCart
the picture plane. Surface shading calculations are performed at every voxel with local gradient vec-tors serving as surface normals. In a separate step, surface classification operators are applied to obtain a partial opacity for every voxel. Operators that detect isovalue contour surfaces and region

A scaled conjugate gradient algorithm for fast supervised learning

by Martin F. Møller - NEURAL NETWORKS , 1993
"... A supervised learning algorithm (Scaled Conjugate Gradient, SCG) with superlinear convergence rate is introduced. The algorithm is based upon a class of optimization techniques well known in numerical analysis as the Conjugate Gradient Methods. SCG uses second order information from the neural netwo ..."
Abstract - Cited by 451 (0 self) - Add to MetaCart
network but requires only O(N) memory usage, where N is the number of weights in the network. The performance of SCG is benchmarked against the performance of the standard backpropagation algorithm (BP) [13], the conjugate gradient backpropagation (CGB) [6] and the one-step Broyden

Geodesic Active Contours

by Vicent Caselles, Ron Kimmel, Guillermo Sapiro , 1997
"... A novel scheme for the detection of object boundaries is presented. The technique is based on active contours evolving in time according to intrinsic geometric measures of the image. The evolving contours naturally split and merge, allowing the simultaneous detection of several objects and both in ..."
Abstract - Cited by 1425 (47 self) - Add to MetaCart
A novel scheme for the detection of object boundaries is presented. The technique is based on active contours evolving in time according to intrinsic geometric measures of the image. The evolving contours naturally split and merge, allowing the simultaneous detection of several objects and both
Next 10 →
Results 1 - 10 of 20,925
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University