Results 1  10
of
417,942
Fast Parallel Algorithms for ShortRange Molecular Dynamics
 JOURNAL OF COMPUTATIONAL PHYSICS
, 1995
"... Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of interatomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dyn ..."
Abstract

Cited by 622 (6 self)
 Add to MetaCart
Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of interatomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular
Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of nalkanes
 J. Comput. Phys
, 1977
"... A numerical algorithm integrating the 3N Cartesian equations of motion of a system of N points subject to holonomic constraints is formulated. The relations of constraint remain perfectly fulfilled at each step of the trajectory despite the approximate character of numerical integration. The method ..."
Abstract

Cited by 682 (6 self)
 Add to MetaCart
is applied to a molecular dynamics simulation of a liquid of 64 nbutane molecules and compared to a simulation using generalized coordinates. The method should be useful for molecular dynamics calculations on large molecules with internal degrees of freedom. 1. INTR~D~JCTI~N The method of molecular dynamics
NAMD2: Greater Scalability for Parallel Molecular Dynamics
 JOURNAL OF COMPUTATIONAL PHYSICS
, 1998
"... Molecular dynamics programs simulate the behavior of biomolecular systems, leading to insights and understanding of their functions. However, the computational complexity of such simulations is enormous. Parallel machines provide the potential to meet this computational challenge. To harness this ..."
Abstract

Cited by 317 (45 self)
 Add to MetaCart
Molecular dynamics programs simulate the behavior of biomolecular systems, leading to insights and understanding of their functions. However, the computational complexity of such simulations is enormous. Parallel machines provide the potential to meet this computational challenge. To harness
Abstract

Cited by 317 (45 self)
 Add to MetaCart
Molecular dynamics programs simulate the behavior of biomolecular systems, leading to insights and understanding of their functions. However, the computational complexity of such simulations is enormous. Parallel machines provide the potential to meet this computational challenge. To harness