Results 1 - 10
of
146
Translational Polygon Containment and Minimal Enclosure using Geometric Algorithms and Mathematical Programming
, 1995
"... We present an algorithm for the two-dimensional translational containment problem: find translations for k polygons (with up to m vertices each) which place them inside a polygonal container (with n vertices) without overlapping. The polygons and container may be nonconvex. The containment algorit ..."
Abstract
-
Cited by 29 (13 self)
- Add to MetaCart
We present an algorithm for the two-dimensional translational containment problem: find translations for k polygons (with up to m vertices each) which place them inside a polygonal container (with n vertices) without overlapping. The polygons and container may be nonconvex. The containment algorithm consists of new algorithms for restriction, evaluation, and subdivision of two-dimensional configuration spaces. The restriction and evaluation algorithms both depend heavily on linear programming; hence we call our algorithm an LP containment algorithm. Our LP containment algorithm is distinguished from previous containment algorithms by the way in which it applies principles of mathematical programming and also by its tight coupling of the evaluation and subdivision algorithms. Our new evaluation algorithm finds a local overlap minimum. Our distance-based subdivision algorithm eliminates a "false" (local but not global) overlap minimum and all layouts near that overlap minimum, a...
Minimal Connected Enclosures on an Embedded Planar Graph
, 1996
"... We study five problems of finding minimal enclosures comprised of elements of a connected, planar graph with a plane embedding. The first three problems consider the identification of a shortest enclosing walk, cycle or trail surrounding a polygonal, simply connected obstacle on the plane. We propos ..."
Abstract
-
Cited by 1 (1 self)
- Add to MetaCart
We study five problems of finding minimal enclosures comprised of elements of a connected, planar graph with a plane embedding. The first three problems consider the identification of a shortest enclosing walk, cycle or trail surrounding a polygonal, simply connected obstacle on the plane. We
Improving interval enclosures
, 2009
"... This paper serves as background information for the Vienna proposal for interval standardization, explaining what is needed in practice to make competent use of the interval arithmetic provided by an implementation of the standard to be. Discussed are methods to improve the quality of interval encl ..."
Abstract
-
Cited by 3 (0 self)
- Add to MetaCart
enclosures of the range of a function over a box, considerations of possible hardware support facilitating the implementation of such methods, and the results of a simple interval challenge that I had posed to the reliable computing mailing list on November 26, 2008. Also given is an example of a bound
Rotational Polygon Overlap Minimization
- Computational Geometry: Theory and Applications
, 1997
"... An effective and fast algorithm is given for rotational overlap minimization: given an overlapping layout of polygons P1 ; P2 ; P3 ; : : : ; Pk in a container polygon C, translate and rotate the polygons to a layout that minimizes an overlap measure. A (local) overlap minimum has the property that ..."
Abstract
-
Cited by 5 (1 self)
- Add to MetaCart
that any perturbation of the polygons increases the chosen measure of overlap. Experiments show that the algorithm works well in practice. It is shown how to apply overlap minimization to create algorithms for other layout tasks: compaction, containment, and minimal enclosure. Compaction: starting with a
Optimized Refinable Enclosures of Multivariate Polynomial Pieces
- Comput. Aided Geom. Design
, 2001
"... An enclosure is a two-sided approximation of a uni- or multivariate function by a pair of typically simpler functions 3688 such that 1 over the domain of interest. Enclosures are optimized by minimizing the width and refined by enlarging the space . This paper develops a fram ..."
Abstract
-
Cited by 14 (4 self)
- Add to MetaCart
An enclosure is a two-sided approximation of a uni- or multivariate function by a pair of typically simpler functions 3688 such that 1 over the domain of interest. Enclosures are optimized by minimizing the width and refined by enlarging the space . This paper develops a
Assessing the benefits of design for recycling for plastics in electronics: A case study of computer enclosures
- Materials and Design
, 2007
"... Abstract With the emergence of extended producer responsibility regulations for electronic devices, it is becoming increasingly important for electronics manufacturers to apply design for recycling (DFR) methods in the design of plastic enclosures. This paper presents an analytical framework for qu ..."
Abstract
-
Cited by 2 (0 self)
- Add to MetaCart
: choosing high-value resins and minimizing enclosure disassembly time. Uncertainty analysis is performed to quantify the uncertainty surrounding economic conditions in the future when the enclosure is ultimately recycled.
Composite Material Wall of Inclined Enclosure on Heat Transfer
"... A numerical study has been conducted for natural convection of air in a three dimensional inclined annulus enclosure. This study wills exam the effect of fibres filler in composite material of inclined enclosure on heat transfer. Two types of optimization will be performed in terms of effective ther ..."
Abstract
- Add to MetaCart
thermal conductivity: minimization and maximization of thermal conductivity. The annulus material is made of Graphite/epoxy laminated composite materials. The annulus enclosure is filled with porous media between two inclined concentric cylinders with 12 fins attached to the inner cylinder. The system
INVERSE NATURAL CONVECTION PROBLEM WITH RADIATION IN RECTANGULAR ENCLOSURE
"... Inverse thermal problem is applied to natural convective flow with radiative heat transfer. The bottom wall temperature in the 2-D cavity domain is estimated by using gas tempera-ture measurements in the flow field. The inverse problem is solved through a minimization of an objective function using ..."
Abstract
-
Cited by 1 (1 self)
- Add to MetaCart
Inverse thermal problem is applied to natural convective flow with radiative heat transfer. The bottom wall temperature in the 2-D cavity domain is estimated by using gas tempera-ture measurements in the flow field. The inverse problem is solved through a minimization of an objective function using
EXPERIMENTAL INVESTIGATION OF NATURAL CONVECTION IN AN ENCLOSURE WITH PARTIAL PARTITIONS AT DIFFERENT ANGLES by
"... Natural convection heat transfer in a partially partitioned enclosure has been in-vestigated experimentally using Mach-Zehnder Interferometry technique. The top and bottom of the enclosure are insulated while one of the vertical walls is heated isothermally. The partitions are made of wood fiber and ..."
Abstract
- Add to MetaCart
inclination angle which minimizes the average Nusselt number. Key words: free convection, enclosure, interferometry, Mach-Zehnder
Results 1 - 10
of
146