Results 1  10
of
2,657,615
Mean shift: A robust approach toward feature space analysis
 In PAMI
, 2002
"... A general nonparametric technique is proposed for the analysis of a complex multimodal feature space and to delineate arbitrarily shaped clusters in it. The basic computational module of the technique is an old pattern recognition procedure, the mean shift. We prove for discrete data the convergence ..."
Abstract

Cited by 2401 (37 self)
 Add to MetaCart
A general nonparametric technique is proposed for the analysis of a complex multimodal feature space and to delineate arbitrarily shaped clusters in it. The basic computational module of the technique is an old pattern recognition procedure, the mean shift. We prove for discrete data
A gentle tutorial on the EM algorithm and its application to parameter estimation for gaussian mixture and hidden markov models
, 1997
"... We describe the maximumlikelihood parameter estimation problem and how the Expectationform of the EM algorithm as it is often given in the literature. We then develop the EM parameter estimation procedure for two applications: 1) finding the parameters of a mixture of Gaussian densities, and 2) fi ..."
Abstract

Cited by 692 (4 self)
 Add to MetaCart
rigor. ii 1 Maximumlikelihood Recall the definition of the maximumlikelihood estimation problem. We have a density function ¢¡¤£¦ ¥ §© ¨ that is governed by the set of parameters § (e.g., might be a set of Gaussians and § could be the means and covariances). We also have a data set of size
Panel Cointegration; Asymptotic and Finite Sample Properties of Pooled Time Series Tests, With an Application to the PPP Hypothesis; New Results. Working paper
, 1997
"... We examine properties of residualbased tests for the null of no cointegration for dynamic panels in which both the shortrun dynamics and the longrun slope coefficients are permitted to be heterogeneous across individual members of the panel+ The tests also allow for individual heterogeneous fixed ..."
Abstract

Cited by 528 (13 self)
 Add to MetaCart
fixed effects and trend terms, and we consider both pooled within dimension tests and group mean between dimension tests+ We derive limiting distributions for these and show that they are normal and free of nuisance parameters+ We also provide Monte Carlo evidence to demonstrate their small sample size
The Dantzig selector: statistical estimation when p is much larger than n
, 2005
"... In many important statistical applications, the number of variables or parameters p is much larger than the number of observations n. Suppose then that we have observations y = Ax + z, where x ∈ R p is a parameter vector of interest, A is a data matrix with possibly far fewer rows than columns, n ≪ ..."
Abstract

Cited by 875 (14 self)
 Add to MetaCart
In many important statistical applications, the number of variables or parameters p is much larger than the number of observations n. Suppose then that we have observations y = Ax + z, where x ∈ R p is a parameter vector of interest, A is a data matrix with possibly far fewer rows than columns, n
Income and Wealth Heterogeneity in the Macroeconomy,
 Journal of Political Economy
, 1998
"... How do movements in the distribution of income and wealth affect the macroeconomy? We analyze this question using a calibrated version of the stochastic growth model with partially uninsurable idiosyncratic risk and movements in aggregate productivity. Our main finding is that, in the stationary st ..."
Abstract

Cited by 675 (11 self)
 Add to MetaCart
stochastic equilibrium, the behavior of the macroeconomic aggregates can be almost perfectly described using only the mean of the wealth distribution. This result is robust to substantial changes in both parameter values and model specification. Our benchmark model, whose only difference from
What is a hidden Markov model?
, 2004
"... Often, problems in biological sequence analysis are just a matter of putting the right label on each residue. In gene identification, we want to label nucleotides as exons, introns, or intergenic sequence. In sequence alignment, we want to associate residues in a query sequence with homologous resi ..."
Abstract

Cited by 1340 (8 self)
 Add to MetaCart
splice site consenses, codon bias, exon/intron length preferences, and open reading frame analysis all in one scoring system. How should all those parameters be set? How should different kinds of information be weighted? A second issue is being able to interpret results probabilistically. Finding a best
Xmeans: Extending Kmeans with Efficient Estimation of the Number of Clusters
 In Proceedings of the 17th International Conf. on Machine Learning
, 2000
"... Despite its popularity for general clustering, Kmeans suffers three major shortcomings; it scales poorly computationally, the number of clusters K has to be supplied by the user, and the search is prone to local minima. We propose solutions for the first two problems, and a partial remedy for the t ..."
Abstract

Cited by 417 (5 self)
 Add to MetaCart
and their parameters. Experiments show this technique reveals the true number of classes in the underlying distribution, and that it is much faster than repeatedly using accelerated Kmeans for different values of K.
A Bayesian Framework for the Analysis of Microarray Expression Data: Regularized tTest and Statistical Inferences of Gene Changes
 Bioinformatics
, 2001
"... Motivation: DNA microarrays are now capable of providing genomewide patterns of gene expression across many different conditions. The first level of analysis of these patterns requires determining whether observed differences in expression are significant or not. Current methods are unsatisfactory ..."
Abstract

Cited by 491 (6 self)
 Add to MetaCart
distributions, parameterized by corresponding means and variances with hierarchical prior distributions. We derive point estimates for both parameters and hyperparameters, and regularized expressions for the variance of each gene by combining the empirical variance with a local background variance associated
Fast approximate nearest neighbors with automatic algorithm configuration
 In VISAPP International Conference on Computer Vision Theory and Applications
, 2009
"... nearestneighbors search, randomized kdtrees, hierarchical kmeans tree, clustering. For many computer vision problems, the most time consuming component consists of nearest neighbor matching in highdimensional spaces. There are no known exact algorithms for solving these highdimensional problems ..."
Abstract

Cited by 455 (2 self)
 Add to MetaCart
nearestneighbors search, randomized kdtrees, hierarchical kmeans tree, clustering. For many computer vision problems, the most time consuming component consists of nearest neighbor matching in highdimensional spaces. There are no known exact algorithms for solving these high
Active Perception
, 1988
"... Active Perception (Active Vision specifically) is defined as a study of Modeling and Control strategies for perception. By modeling we mean models of sensors, processing modules and their interaction. We distinguish local models from global models by their extent of application in space and time. T ..."
Abstract

Cited by 431 (12 self)
 Add to MetaCart
Active Perception (Active Vision specifically) is defined as a study of Modeling and Control strategies for perception. By modeling we mean models of sensors, processing modules and their interaction. We distinguish local models from global models by their extent of application in space and time
Results 1  10
of
2,657,615