Results 1  10
of
6,343
Magnitude Image CSPAMM Reconstruction (MICSR)
"... Image reconstruction using complementary spatial modulation of magnetization, or CSPAMM, requires the subtraction of two complex datasets to remove the untagged signal. Although the resultant images typically have sharper and more persistent tags than images formed without complementary tagging puls ..."
Abstract
 Add to MetaCart
pulses, handling the complex data is problematic and tag contrast still degrades significantly during diastole. This article presents a magnitude image CSPAMM reconstruction method called MICSR that is simple to implement and produces images with improved contrast and tag persistence. The MICSR method
Magnitude image cspamm reconstruction (micsr)
 MAGNETIC RESONANCE IN MEDICINE
, 2003
"... Image reconstruction of tagged cardiac MR images using complementary spatial modulation of magnetization (CSPAMM) requires the subtraction of two complex datasets to remove the untagged signal. Although the resultant images typically have sharper and more persistent tags than images formed without c ..."
Abstract

Cited by 2 (2 self)
 Add to MetaCart
complementary tagging pulses, handling the complex data is problematic and tag contrast still degrades significantly during diastole. This article presents a magnitude image CSPAMM reconstruction (MICSR) method that is simple to implement and produces images with improved contrast and tag persistence. The MICSR
A review of image denoising algorithms, with a new one
 SIMUL
, 2005
"... The search for efficient image denoising methods is still a valid challenge at the crossing of functional analysis and statistics. In spite of the sophistication of the recently proposed methods, most algorithms have not yet attained a desirable level of applicability. All show an outstanding perf ..."
Abstract

Cited by 508 (6 self)
 Add to MetaCart
is proven to be asymptotically optimal under a generic statistical image model. The denoising performance of all considered methods are compared in four ways; mathematical: asymptotic order of magnitude of the method noise under regularity assumptions; perceptualmathematical: the algorithms artifacts
Nonlinear total variation based noise removal algorithms
, 1992
"... A constrained optimization type of numerical algorithm for removing noise from images is presented. The total variation of the image is minimized subject to constraints involving the statistics of the noise. The constraints are imposed using Lagrange multipliers. The solution is obtained using the g ..."
Abstract

Cited by 2271 (51 self)
 Add to MetaCart
to be stateoftheart for very noisy images. The method is noninvasive, yielding sharp edges in the image. The technique could be interpreted as a first step of moving each level set of the image normal to itself with velocity equal to the curvature of the level set divided by the magnitude of the gradient
Efficient belief propagation for early vision
 In CVPR
, 2004
"... Markov random field models provide a robust and unified framework for early vision problems such as stereo, optical flow and image restoration. Inference algorithms based on graph cuts and belief propagation yield accurate results, but despite recent advances are often still too slow for practical u ..."
Abstract

Cited by 515 (8 self)
 Add to MetaCart
the standard algorithm by several orders of magnitude. In practice we obtain stereo, optical flow and image restoration algorithms that are as accurate as other global methods (e.g., using the Middlebury stereo benchmark) while being as fast as local techniques. 1
Fast texture synthesis using treestructured vector quantization
, 2000
"... Figure 1: Our texture generation process takes an example texture patch (left) and a random noise (middle) as input, and modifies this random noise to make it look like the given example texture. The synthesized texture (right) can be of arbitrary size, and is perceived as very similar to the given ..."
Abstract

Cited by 561 (12 self)
 Add to MetaCart
, but runs two orders of magnitude faster. This permits us to apply texture synthesis to problems where it has traditionally been considered impractical. In particular, we have applied it to constrained synthesis for image editing and temporal texture generation. Our algorithm is derived from Markov Random
A computational approach to edge detection
 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
, 1986
"... This paper describes a computational approach to edge detection. The success of the approach depends on the definition of a comprehensive set of goals for the computation of edge points. These goals must be precise enough to delimit the desired behavior of the detector while making minimal assumpti ..."
Abstract

Cited by 4675 (0 self)
 Add to MetaCart
. With this principle we derive a single operator shape which is optimal at any scale. The optimal detector has a simple approximate implementation in which edges are marked at maxima in gradient magnitude of a Gaussiansmoothed image. We extend this simple detector using operators of several widths to cope
Near Optimal Signal Recovery From Random Projections: Universal Encoding Strategies?
, 2004
"... Suppose we are given a vector f in RN. How many linear measurements do we need to make about f to be able to recover f to within precision ɛ in the Euclidean (ℓ2) metric? Or more exactly, suppose we are interested in a class F of such objects— discrete digital signals, images, etc; how many linear m ..."
Abstract

Cited by 1513 (20 self)
 Add to MetaCart
Suppose we are given a vector f in RN. How many linear measurements do we need to make about f to be able to recover f to within precision ɛ in the Euclidean (ℓ2) metric? Or more exactly, suppose we are interested in a class F of such objects— discrete digital signals, images, etc; how many linear
Shape Matching and Object Recognition Using Shape Contexts
 IEEE Transactions on Pattern Analysis and Machine Intelligence
, 2001
"... We present a novel approach to measuring similarity between shapes and exploit it for object recognition. In our framework, the measurement of similarity is preceded by (1) solv ing for correspondences between points on the two shapes, (2) using the correspondences to estimate an aligning transform ..."
Abstract

Cited by 1809 (21 self)
 Add to MetaCart
for this purpose. The dissimilarity between the two shapes is computed as a sum of matching errors between corresponding points, together with a term measuring the magnitude of the aligning trans form. We treat recognition in a nearestneighbor classification framework as the problem of finding the stored
Fast Bilateral Filtering for the Display of HighDynamicRange Images
, 2002
"... We present a new technique for the display of highdynamicrange images, which reduces the contrast while preserving detail. It is based on a twoscale decomposition of the image into a base layer, encoding largescale variations, and a detail layer. Only the base layer has its contrast reduced, the ..."
Abstract

Cited by 453 (10 self)
 Add to MetaCart
We present a new technique for the display of highdynamicrange images, which reduces the contrast while preserving detail. It is based on a twoscale decomposition of the image into a base layer, encoding largescale variations, and a detail layer. Only the base layer has its contrast reduced
Results 1  10
of
6,343