Results 1  10
of
531,104
Antide Sitter Space, Thermal Phase Transition, and Confinement in Gauge Theories
 Adv. Theor. Math. Phys
, 1998
"... The correspondence between supergravity (and string theory) on AdS space and boundary conformal field theory relates the thermodynamics of N = 4 super YangMills theory in four dimensions to the thermodynamics of Schwarzschild black holes in Antide Sitter space. In this description, quantum phenome ..."
Abstract

Cited by 1087 (4 self)
 Add to MetaCart
phenomena such as the spontaneous breaking of the center of the gauge group, magnetic confinement, and the mass gap are coded in classical geometry. The correspondence makes it manifest that the entropy of a very large AdS Schwarzschild black hole must scale “holographically ” with the volume of its horizon
Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media
 IEEE Trans. Antennas and Propagation
, 1966
"... The characteristics of the waves guided along a plane [I] P. S. Epstein, “On the possibility of electromagnetic surface waves, ” Proc. Nat’l dcad. Sciences, vol. 40, pp. 11581165, Deinterface which separates a semiinfinite region of free cember 1954. space from that of a magnetoionic medium are in ..."
Abstract

Cited by 1009 (0 self)
 Add to MetaCart
are investi [2] T. Tamir and A. A. Oliner, “The spectrum of electromagnetic waves guided by a plasma layer, ” Proc. IEEE, vol. 51, pp. 317gated for the case in which the static magnetic field is 332, February 1963. oriented perpendicular to the plane interface. It is [3] &I. A. Gintsburg, “Surface waves
Segmentation of brain MR images through a hidden Markov random field model and the expectationmaximization algorithm
 IEEE TRANSACTIONS ON MEDICAL. IMAGING
, 2001
"... The finite mixture (FM) model is the most commonly used model for statistical segmentation of brain magnetic resonance (MR) images because of its simple mathematical form and the piecewise constant nature of ideal brain MR images. However, being a histogrambased model, the FM has an intrinsic limi ..."
Abstract

Cited by 619 (14 self)
 Add to MetaCart
The finite mixture (FM) model is the most commonly used model for statistical segmentation of brain magnetic resonance (MR) images because of its simple mathematical form and the piecewise constant nature of ideal brain MR images. However, being a histogrambased model, the FM has an intrinsic
Introduction to redundant arrays of inexpensive disks
 Proceedings of the IEEE COMPCON
, 1989
"... Abstract Increasmg performance of CPUs and memorres wrll be squandered lf not matched by a sunrlm peformance ourease m II0 Whde the capactty of Smgle Large Expenstve D&T (SLED) has grown rapuily, the performance rmprovement of SLED has been modest Redundant Arrays of Inexpensive Disks (RAID), ba ..."
Abstract

Cited by 846 (55 self)
 Add to MetaCart
), based on the magnetic duk technology developed for personal computers, offers an attractive alternattve IO SLED, promtang onprovements of an or&r of mogm&e m pctformance, rehabdlty, power consumption, and scalalnlrty Thu paper rntroducesfivc levels of RAIDS, grvmg rheu relative costlpetfotmance
Multimodality Image Registration by Maximization of Mutual Information
 IEEE TRANSACTIONS ON MEDICAL IMAGING
, 1997
"... A new approach to the problem of multimodality medical image registration is proposed, using a basic concept from information theory, mutual information (MI), or relative entropy, as a new matching criterion. The method presented in this paper applies MI to measure the statistical dependence or in ..."
Abstract

Cited by 777 (9 self)
 Add to MetaCart
A new approach to the problem of multimodality medical image registration is proposed, using a basic concept from information theory, mutual information (MI), or relative entropy, as a new matching criterion. The method presented in this paper applies MI to measure the statistical dependence
The selfduality equations on a Riemann surface
 Proc. Lond. Math. Soc., III. Ser
, 1987
"... In this paper we shall study a special class of solutions of the selfdual YangMills equations. The original selfduality equations which arose in mathematical physics were defined on Euclidean 4space. The physically relevant solutions were the ones with finite action—the socalled 'instanton ..."
Abstract

Cited by 524 (6 self)
 Add to MetaCart
In this paper we shall study a special class of solutions of the selfdual YangMills equations. The original selfduality equations which arose in mathematical physics were defined on Euclidean 4space. The physically relevant solutions were the ones with finite action—the socalled &apos
Graphical models, exponential families, and variational inference
, 2008
"... The formalism of probabilistic graphical models provides a unifying framework for capturing complex dependencies among random variables, and building largescale multivariate statistical models. Graphical models have become a focus of research in many statistical, computational and mathematical fiel ..."
Abstract

Cited by 800 (26 self)
 Add to MetaCart
likelihoods, marginal probabilities and most probable configurations. We describe how a wide varietyof algorithms — among them sumproduct, cluster variational methods, expectationpropagation, mean field methods, maxproduct and linear programming relaxation, as well as conic programming relaxations — can
KodairaSpencer theory of gravity and exact results for quantum string amplitudes
 Commun. Math. Phys
, 1994
"... We develop techniques to compute higher loop string amplitudes for twisted N = 2 theories with ĉ = 3 (i.e. the critical case). An important ingredient is the discovery of an anomaly at every genus in decoupling of BRST trivial states, captured to all orders by a master anomaly equation. In a particu ..."
Abstract

Cited by 545 (60 self)
 Add to MetaCart
We develop techniques to compute higher loop string amplitudes for twisted N = 2 theories with ĉ = 3 (i.e. the critical case). An important ingredient is the discovery of an anomaly at every genus in decoupling of BRST trivial states, captured to all orders by a master anomaly equation. In a
Inverse Acoustic and Electromagnetic Scattering Theory, Second Edition
, 1998
"... Abstract. This paper is a survey of the inverse scattering problem for timeharmonic acoustic and electromagnetic waves at fixed frequency. We begin by a discussion of “weak scattering ” and Newtontype methods for solving the inverse scattering problem for acoustic waves, including a brief discussi ..."
Abstract

Cited by 1072 (45 self)
 Add to MetaCart
discussion of Tikhonov’s method for the numerical solution of illposed problems. We then proceed to prove a uniqueness theorem for the inverse obstacle problems for acoustic waves and the linear sampling method for reconstructing the shape of a scattering obstacle from far field data. Included in our
String theory and noncommutative geometry
 JHEP
, 1999
"... We extend earlier ideas about the appearance of noncommutative geometry in string theory with a nonzero Bfield. We identify a limit in which the entire string dynamics is described by a minimally coupled (supersymmetric) gauge theory on a noncommutative space, and discuss the corrections away from ..."
Abstract

Cited by 801 (8 self)
 Add to MetaCart
counterpart. We obtain a new perspective on noncommutative gauge theory on a torus, its Tduality, and Morita equivalence. We also discuss the D0/D4 system, the relation to Mtheory in DLCQ, and a possible noncommutative version of the sixdimensional (2, 0) theory. 8/99
Results 1  10
of
531,104