Results 1  10
of
174,485
Comparison of Linear Prediction Methods in Terms of Sparsity, Stability and Robustness to
"... The aim of this paper is to provide an experimental evaluation of five linear prediction methods in terms of sparsity, stability and robustness to reverberation. Moreover, we show that all the considered methods can be derived from a general linear prediction optimization problem. It is empirically ..."
Abstract
 Add to MetaCart
The aim of this paper is to provide an experimental evaluation of five linear prediction methods in terms of sparsity, stability and robustness to reverberation. Moreover, we show that all the considered methods can be derived from a general linear prediction optimization problem. It is empirically
Accurate realtime object tracking with linear prediction method
 ICIP 2003
"... This paper presents an efticient technique for realtime tracking of a single moving object in terrestrial scenes using a stationary camera. The tracking algorithm is based on the Linear Prediction (LP) solved by the Maximum Entropy Method (MEM). It attempts to predict the centroid of the moving obj ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
This paper presents an efticient technique for realtime tracking of a single moving object in terrestrial scenes using a stationary camera. The tracking algorithm is based on the Linear Prediction (LP) solved by the Maximum Entropy Method (MEM). It attempts to predict the centroid of the moving
New results in linear filtering and prediction theory
 TRANS. ASME, SER. D, J. BASIC ENG
, 1961
"... A nonlinear differential equation of the Riccati type is derived for the covariance matrix of the optimal filtering error. The solution of this "variance equation " completely specifies the optimal filter for either finite or infinite smoothing intervals and stationary or nonstationary sta ..."
Abstract

Cited by 607 (0 self)
 Add to MetaCart
A nonlinear differential equation of the Riccati type is derived for the covariance matrix of the optimal filtering error. The solution of this "variance equation " completely specifies the optimal filter for either finite or infinite smoothing intervals and stationary or nonstationary statistics. The variance equation is closely related to the Hamiltonian (canonical) differential equations of the calculus of variations. Analytic solutions are available in some cases. The significance of the variance equation is illustrated by examples which duplicate, simplify, or extend earlier results in this field. The Duality Principle relating stochastic estimation and deterministic control problems plays an important role in the proof of theoretical results. In several examples, the estimation problem and its dual are discussed sidebyside. Properties of the variance equation are of great interest in the theory of adaptive systems. Some aspects of this are considered briefly.
Training Linear SVMs in Linear Time
, 2006
"... Linear Support Vector Machines (SVMs) have become one of the most prominent machine learning techniques for highdimensional sparse data commonly encountered in applications like text classification, wordsense disambiguation, and drug design. These applications involve a large number of examples n ..."
Abstract

Cited by 549 (6 self)
 Add to MetaCart
Linear Support Vector Machines (SVMs) have become one of the most prominent machine learning techniques for highdimensional sparse data commonly encountered in applications like text classification, wordsense disambiguation, and drug design. These applications involve a large number of examples n
Learning to predict by the methods of temporal differences
 MACHINE LEARNING
, 1988
"... This article introduces a class of incremental learning procedures specialized for prediction – that is, for using past experience with an incompletely known system to predict its future behavior. Whereas conventional predictionlearning methods assign credit by means of the difference between predi ..."
Abstract

Cited by 1521 (56 self)
 Add to MetaCart
This article introduces a class of incremental learning procedures specialized for prediction – that is, for using past experience with an incompletely known system to predict its future behavior. Whereas conventional predictionlearning methods assign credit by means of the difference between
Lambertian Reflectance and Linear Subspaces
, 2000
"... We prove that the set of all reflectance functions (the mapping from surface normals to intensities) produced by Lambertian objects under distant, isotropic lighting lies close to a 9D linear subspace. This implies that, in general, the set of images of a convex Lambertian object obtained under a wi ..."
Abstract

Cited by 526 (20 self)
 Add to MetaCart
the effects of Lambertian materials as the analog of a convolution. These results allow us to construct algorithms for object recognition based on linear methods as well as algorithms that use convex optimization to enforce nonnegative lighting functions. Finally, we show a simple way to enforce non
An iterative method for the solution of the eigenvalue problem of linear differential and integral
, 1950
"... The present investigation designs a systematic method for finding the latent roots and the principal axes of a matrix, without reducing the order of the matrix. It is characterized by a wide field of applicability and great accuracy, since the accumulation of rounding errors is avoided, through the ..."
Abstract

Cited by 537 (0 self)
 Add to MetaCart
the process of "minimized iterations". Moreover, the method leads to a well convergent successive approximation procedure by which the solution of integral equations of the Fredholm type and the solution of the eigenvalue problem of linear differential and integral operators may be accomplished. I.
Linear models and empirical bayes methods for assessing differential expression in microarray experiments.
 Stat. Appl. Genet. Mol. Biol.
, 2004
"... Abstract The problem of identifying differentially expressed genes in designed microarray experiments is considered. Lonnstedt and Speed (2002) derived an expression for the posterior odds of differential expression in a replicated twocolor experiment using a simple hierarchical parametric model. ..."
Abstract

Cited by 1321 (24 self)
 Add to MetaCart
. The purpose of this paper is to develop the hierarchical model of Lonnstedt and Speed (2002) into a practical approach for general microarray experiments with arbitrary numbers of treatments and RNA samples. The model is reset in the context of general linear models with arbitrary coefficients and contrasts
Using Linear Algebra for Intelligent Information Retrieval
 SIAM REVIEW
, 1995
"... Currently, most approaches to retrieving textual materials from scientific databases depend on a lexical match between words in users' requests and those in or assigned to documents in a database. Because of the tremendous diversity in the words people use to describe the same document, lexical ..."
Abstract

Cited by 676 (18 self)
 Add to MetaCart
, lexical methods are necessarily incomplete and imprecise. Using the singular value decomposition (SVD), one can take advantage of the implicit higherorder structure in the association of terms with documents by determining the SVD of large sparse term by document matrices. Terms and documents represented
Interiorpoint Methods
, 2000
"... The modern era of interiorpoint methods dates to 1984, when Karmarkar proposed his algorithm for linear programming. In the years since then, algorithms and software for linear programming have become quite sophisticated, while extensions to more general classes of problems, such as convex quadrati ..."
Abstract

Cited by 612 (15 self)
 Add to MetaCart
The modern era of interiorpoint methods dates to 1984, when Karmarkar proposed his algorithm for linear programming. In the years since then, algorithms and software for linear programming have become quite sophisticated, while extensions to more general classes of problems, such as convex
Results 1  10
of
174,485