• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 37,732
Next 10 →

Training Linear SVMs in Linear Time

by Thorsten Joachims , 2006
"... Linear Support Vector Machines (SVMs) have become one of the most prominent machine learning techniques for high-dimensional sparse data commonly encountered in applications like text classification, word-sense disambiguation, and drug design. These applications involve a large number of examples n ..."
Abstract - Cited by 549 (6 self) - Add to MetaCart
Linear Support Vector Machines (SVMs) have become one of the most prominent machine learning techniques for high-dimensional sparse data commonly encountered in applications like text classification, word-sense disambiguation, and drug design. These applications involve a large number of examples n

Linear pattern matching algorithms

by Peter Weiner - IN PROCEEDINGS OF THE 14TH ANNUAL IEEE SYMPOSIUM ON SWITCHING AND AUTOMATA THEORY. IEEE , 1972
"... In 1970, Knuth, Pratt, and Morris [1] showed how to do basic pattern matching in linear time. Related problems, such as those discussed in [4], have previously been solved by efficient but sub-optimal algorithms. In this paper, we introduce an interesting data structure called a bi-tree. A linear ti ..."
Abstract - Cited by 546 (0 self) - Add to MetaCart
In 1970, Knuth, Pratt, and Morris [1] showed how to do basic pattern matching in linear time. Related problems, such as those discussed in [4], have previously been solved by efficient but sub-optimal algorithms. In this paper, we introduce an interesting data structure called a bi-tree. A linear

Lambertian Reflectance and Linear Subspaces

by Ronen Basri, David Jacobs , 2000
"... We prove that the set of all reflectance functions (the mapping from surface normals to intensities) produced by Lambertian objects under distant, isotropic lighting lies close to a 9D linear subspace. This implies that, in general, the set of images of a convex Lambertian object obtained under a wi ..."
Abstract - Cited by 526 (20 self) - Add to MetaCart
the effects of Lambertian materials as the analog of a convolution. These results allow us to construct algorithms for object recognition based on linear methods as well as algorithms that use convex optimization to enforce non-negative lighting functions. Finally, we show a simple way to enforce non

Decoding by Linear Programming

by Emmanuel J. Candès, Terence Tao , 2004
"... This paper considers the classical error correcting problem which is frequently discussed in coding theory. We wish to recover an input vector f ∈ Rn from corrupted measurements y = Af + e. Here, A is an m by n (coding) matrix and e is an arbitrary and unknown vector of errors. Is it possible to rec ..."
Abstract - Cited by 1399 (16 self) - Add to MetaCart
for some ρ> 0. In short, f can be recovered exactly by solving a simple convex optimization problem (which one can recast as a linear program). In addition, numerical experiments suggest that this recovery procedure works unreasonably well; f is recovered exactly even in situations where a significant

Some optimal inapproximability results

by Johan Håstad , 2002
"... We prove optimal, up to an arbitrary ffl? 0, inapproximability results for Max-Ek-Sat for k * 3, maximizing the number of satisfied linear equations in an over-determined system of linear equations modulo a prime p and Set Splitting. As a consequence of these results we get improved lower bounds for ..."
Abstract - Cited by 751 (11 self) - Add to MetaCart
We prove optimal, up to an arbitrary ffl? 0, inapproximability results for Max-Ek-Sat for k * 3, maximizing the number of satisfied linear equations in an over-determined system of linear equations modulo a prime p and Set Splitting. As a consequence of these results we get improved lower bounds

New results in linear filtering and prediction theory

by R. E. Kalman, R. S. Bucy - TRANS. ASME, SER. D, J. BASIC ENG , 1961
"... A nonlinear differential equation of the Riccati type is derived for the covariance matrix of the optimal filtering error. The solution of this "variance equation " completely specifies the optimal filter for either finite or infinite smoothing intervals and stationary or nonstationary sta ..."
Abstract - Cited by 607 (0 self) - Add to MetaCart
A nonlinear differential equation of the Riccati type is derived for the covariance matrix of the optimal filtering error. The solution of this "variance equation " completely specifies the optimal filter for either finite or infinite smoothing intervals and stationary or nonstationary

A NEW POLYNOMIAL-TIME ALGORITHM FOR LINEAR PROGRAMMING

by N. Karmarkar - COMBINATORICA , 1984
"... We present a new polynomial-time algorithm for linear programming. In the worst case, the algorithm requires O(tf'SL) arithmetic operations on O(L) bit numbers, where n is the number of variables and L is the number of bits in the input. The running,time of this algorithm is better than the ell ..."
Abstract - Cited by 860 (3 self) - Add to MetaCart
We present a new polynomial-time algorithm for linear programming. In the worst case, the algorithm requires O(tf'SL) arithmetic operations on O(L) bit numbers, where n is the number of variables and L is the number of bits in the input. The running,time of this algorithm is better than

Global Optimization with Polynomials and the Problem of Moments

by Jean B. Lasserre - SIAM JOURNAL ON OPTIMIZATION , 2001
"... We consider the problem of finding the unconstrained global minimum of a real-valued polynomial p(x) : R R, as well as the global minimum of p(x), in a compact set K defined by polynomial inequalities. It is shown that this problem reduces to solving an (often finite) sequence of convex linear ma ..."
Abstract - Cited by 577 (48 self) - Add to MetaCart
We consider the problem of finding the unconstrained global minimum of a real-valued polynomial p(x) : R R, as well as the global minimum of p(x), in a compact set K defined by polynomial inequalities. It is shown that this problem reduces to solving an (often finite) sequence of convex linear

SNOPT: An SQP Algorithm For Large-Scale Constrained Optimization

by Philip E. Gill, Walter Murray, Michael A. Saunders , 2002
"... Sequential quadratic programming (SQP) methods have proved highly effective for solving constrained optimization problems with smooth nonlinear functions in the objective and constraints. Here we consider problems with general inequality constraints (linear and nonlinear). We assume that first deriv ..."
Abstract - Cited by 597 (24 self) - Add to MetaCart
Sequential quadratic programming (SQP) methods have proved highly effective for solving constrained optimization problems with smooth nonlinear functions in the objective and constraints. Here we consider problems with general inequality constraints (linear and nonlinear). We assume that first

A training algorithm for optimal margin classifiers

by Bernhard E. Boser, et al. - PROCEEDINGS OF THE 5TH ANNUAL ACM WORKSHOP ON COMPUTATIONAL LEARNING THEORY , 1992
"... A training algorithm that maximizes the margin between the training patterns and the decision boundary is presented. The technique is applicable to a wide variety of classifiaction functions, including Perceptrons, polynomials, and Radial Basis Functions. The effective number of parameters is adjust ..."
Abstract - Cited by 1865 (43 self) - Add to MetaCart
is adjusted automatically to match the complexity of the problem. The solution is expressed as a linear combination of supporting patterns. These are the subset of training patterns that are closest to the decision boundary. Bounds on the generalization performance based on the leave-one-out method and the VC
Next 10 →
Results 1 - 10 of 37,732
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University