Results 1  10
of
82,177
Decoding by Linear Programming
, 2004
"... This paper considers the classical error correcting problem which is frequently discussed in coding theory. We wish to recover an input vector f ∈ Rn from corrupted measurements y = Af + e. Here, A is an m by n (coding) matrix and e is an arbitrary and unknown vector of errors. Is it possible to rec ..."
Abstract

Cited by 1399 (16 self)
 Add to MetaCart
for some ρ> 0. In short, f can be recovered exactly by solving a simple convex optimization problem (which one can recast as a linear program). In addition, numerical experiments suggest that this recovery procedure works unreasonably well; f is recovered exactly even in situations where a significant
A NEW POLYNOMIALTIME ALGORITHM FOR LINEAR PROGRAMMING
 COMBINATORICA
, 1984
"... We present a new polynomialtime algorithm for linear programming. In the worst case, the algorithm requires O(tf'SL) arithmetic operations on O(L) bit numbers, where n is the number of variables and L is the number of bits in the input. The running,time of this algorithm is better than the ell ..."
Abstract

Cited by 860 (3 self)
 Add to MetaCart
We present a new polynomialtime algorithm for linear programming. In the worst case, the algorithm requires O(tf'SL) arithmetic operations on O(L) bit numbers, where n is the number of variables and L is the number of bits in the input. The running,time of this algorithm is better than
Interior Point Methods in Semidefinite Programming with Applications to Combinatorial Optimization
 SIAM Journal on Optimization
, 1993
"... We study the semidefinite programming problem (SDP), i.e the problem of optimization of a linear function of a symmetric matrix subject to linear equality constraints and the additional condition that the matrix be positive semidefinite. First we review the classical cone duality as specialized to S ..."
Abstract

Cited by 547 (12 self)
 Add to MetaCart
We study the semidefinite programming problem (SDP), i.e the problem of optimization of a linear function of a symmetric matrix subject to linear equality constraints and the additional condition that the matrix be positive semidefinite. First we review the classical cone duality as specialized
Minimax Programs
 University of California Press
, 1997
"... We introduce an optimization problem called a minimax program that is similar to a linear program, except that the addition operator is replaced in the constraint equations by the maximum operator. We clarify the relation of this problem to some betterknown problems. We identify an interesting spec ..."
Abstract

Cited by 482 (5 self)
 Add to MetaCart
We introduce an optimization problem called a minimax program that is similar to a linear program, except that the addition operator is replaced in the constraint equations by the maximum operator. We clarify the relation of this problem to some betterknown problems. We identify an interesting
SNOPT: An SQP Algorithm For LargeScale Constrained Optimization
, 2002
"... Sequential quadratic programming (SQP) methods have proved highly effective for solving constrained optimization problems with smooth nonlinear functions in the objective and constraints. Here we consider problems with general inequality constraints (linear and nonlinear). We assume that first deriv ..."
Abstract

Cited by 597 (24 self)
 Add to MetaCart
Sequential quadratic programming (SQP) methods have proved highly effective for solving constrained optimization problems with smooth nonlinear functions in the objective and constraints. Here we consider problems with general inequality constraints (linear and nonlinear). We assume that first
Training Linear SVMs in Linear Time
, 2006
"... Linear Support Vector Machines (SVMs) have become one of the most prominent machine learning techniques for highdimensional sparse data commonly encountered in applications like text classification, wordsense disambiguation, and drug design. These applications involve a large number of examples n ..."
Abstract

Cited by 549 (6 self)
 Add to MetaCart
Linear Support Vector Machines (SVMs) have become one of the most prominent machine learning techniques for highdimensional sparse data commonly encountered in applications like text classification, wordsense disambiguation, and drug design. These applications involve a large number of examples n
The program dependence graph and its use in optimization
 ACM Transactions on Programming Languages and Systems
, 1987
"... In this paper we present an intermediate program representation, called the program dependence graph (PDG), that makes explicit both the data and control dependence5 for each operation in a program. Data dependences have been used to represent only the relevant data flow relationships of a program. ..."
Abstract

Cited by 996 (3 self)
 Add to MetaCart
. Control dependence5 are introduced to analogously represent only the essential control flow relationships of a program. Control dependences are derived from the usual control flow graph. Many traditional optimizations operate more efficiently on the PDG. Since dependences in the PDG connect
Dynamic programming algorithm optimization for spoken word recognition
 IEEE TRANSACTIONS ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING
, 1978
"... This paper reports on an optimum dynamic programming (DP) based timenormalization algorithm for spoken word recognition. First, a general principle of timenormalization is given using timewarping function. Then, two timenormalized distance definitions, ded symmetric and asymmetric forms, are der ..."
Abstract

Cited by 788 (3 self)
 Add to MetaCart
This paper reports on an optimum dynamic programming (DP) based timenormalization algorithm for spoken word recognition. First, a general principle of timenormalization is given using timewarping function. Then, two timenormalized distance definitions, ded symmetric and asymmetric forms
The Extended Linear Complementarity Problem
, 1993
"... We consider an extension of the horizontal linear complementarity problem, which we call the extended linear complementarity problem (XLCP). With the aid of a natural bilinear program, we establish various properties of this extended complementarity problem; these include the convexity of the biline ..."
Abstract

Cited by 788 (30 self)
 Add to MetaCart
We consider an extension of the horizontal linear complementarity problem, which we call the extended linear complementarity problem (XLCP). With the aid of a natural bilinear program, we establish various properties of this extended complementarity problem; these include the convexity
Automatic Discovery of Linear Restraints Among Variables of a Program
, 1978
"... The model of abstract interpretation of programs developed by Cousot and Cousot [2nd ISOP, 1976], Cousot and Cousot [POPL 1977] and Cousot [PhD thesis 1978] is applied to the static determination of linear equality or inequality invariant relations among numerical variables of programs. ..."
Abstract

Cited by 726 (43 self)
 Add to MetaCart
The model of abstract interpretation of programs developed by Cousot and Cousot [2nd ISOP, 1976], Cousot and Cousot [POPL 1977] and Cousot [PhD thesis 1978] is applied to the static determination of linear equality or inequality invariant relations among numerical variables of programs.
Results 1  10
of
82,177