Results 1  10
of
1,805,070
A NEW POLYNOMIALTIME ALGORITHM FOR LINEAR PROGRAMMING
 COMBINATORICA
, 1984
"... We present a new polynomialtime algorithm for linear programming. In the worst case, the algorithm requires O(tf'SL) arithmetic operations on O(L) bit numbers, where n is the number of variables and L is the number of bits in the input. The running,time of this algorithm is better than the ell ..."
Abstract

Cited by 857 (3 self)
 Add to MetaCart
We present a new polynomialtime algorithm for linear programming. In the worst case, the algorithm requires O(tf'SL) arithmetic operations on O(L) bit numbers, where n is the number of variables and L is the number of bits in the input. The running,time of this algorithm is better than
Factoring wavelet transforms into lifting steps
 J. FOURIER ANAL. APPL
, 1998
"... This paper is essentially tutorial in nature. We show how any discrete wavelet transform or two band subband filtering with finite filters can be decomposed into a finite sequence of simple filtering steps, which we call lifting steps but that are also known as ladder structures. This decompositio ..."
Abstract

Cited by 585 (8 self)
 Add to MetaCart
. This decomposition corresponds to a factorization of the polyphase matrix of the wavelet or subband filters into elementary matrices. That such a factorization is possible is wellknown to algebraists (and expressed by the formula); it is also used in linear systems theory in the electrical engineering community. We
Survey on Independent Component Analysis
 NEURAL COMPUTING SURVEYS
, 1999
"... A common problem encountered in such disciplines as statistics, data analysis, signal processing, and neural network research, is nding a suitable representation of multivariate data. For computational and conceptual simplicity, such a representation is often sought as a linear transformation of the ..."
Abstract

Cited by 2311 (104 self)
 Add to MetaCart
of the original data. Wellknown linear transformation methods include, for example, principal component analysis, factor analysis, and projection pursuit. A recently developed linear transformation method is independent component analysis (ICA), in which the desired representation is the one that minimizes
Indexing by latent semantic analysis
 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE
, 1990
"... A new method for automatic indexing and retrieval is described. The approach is to take advantage of implicit higherorder structure in the association of terms with documents (“semantic structure”) in order to improve the detection of relevant documents on the basis of terms found in queries. The p ..."
Abstract

Cited by 3775 (35 self)
 Add to MetaCart
. The particular technique used is singularvalue decomposition, in which a large term by document matrix is decomposed into a set of ca. 100 orthogonal factors from which the original matrix can be approximated by linear combination. Documents are represented by ca. 100 item vectors of factor weights. Queries
Detection and Tracking of Point Features
 International Journal of Computer Vision
, 1991
"... The factorization method described in this series of reports requires an algorithm to track the motion of features in an image stream. Given the small interframe displacement made possible by the factorization approach, the best tracking method turns out to be the one proposed by Lucas and Kanade i ..."
Abstract

Cited by 631 (2 self)
 Add to MetaCart
The factorization method described in this series of reports requires an algorithm to track the motion of features in an image stream. Given the small interframe displacement made possible by the factorization approach, the best tracking method turns out to be the one proposed by Lucas and Kanade
An Empirical Study of Smoothing Techniques for Language Modeling
, 1998
"... We present an extensive empirical comparison of several smoothing techniques in the domain of language modeling, including those described by Jelinek and Mercer (1980), Katz (1987), and Church and Gale (1991). We investigate for the first time how factors such as training data size, corpus (e.g., Br ..."
Abstract

Cited by 1220 (21 self)
 Add to MetaCart
We present an extensive empirical comparison of several smoothing techniques in the domain of language modeling, including those described by Jelinek and Mercer (1980), Katz (1987), and Church and Gale (1991). We investigate for the first time how factors such as training data size, corpus (e
The relationship between return and market value of common stocks
 Journal of Financial Economics
, 1981
"... This study examines the empirical relattonship between the return and the total market value of NYSE common stocks. It is found that smaller firms have had htgher risk adjusted returns, on average, than larger lirms. This ‘size effect ’ has been in existence for at least forty years and is evidence ..."
Abstract

Cited by 787 (0 self)
 Add to MetaCart
that the capital asset pricing model is misspecttied. The size elfect is not linear in the market value; the main effect occurs for very small tirms while there is little difference m return between average sized and large firms. It IS not known whether size per se is responsible for the effect or whether size
Amortized Efficiency of List Update and Paging Rules
, 1985
"... In this article we study the amortized efficiency of the “movetofront” and similar rules for dynamically maintaining a linear list. Under the assumption that accessing the ith element from the front of the list takes 0(i) time, we show that movetofront is within a constant factor of optimum amo ..."
Abstract

Cited by 824 (8 self)
 Add to MetaCart
In this article we study the amortized efficiency of the “movetofront” and similar rules for dynamically maintaining a linear list. Under the assumption that accessing the ith element from the front of the list takes 0(i) time, we show that movetofront is within a constant factor of optimum
Fast Algorithms for Mining Association Rules
, 1994
"... We consider the problem of discovering association rules between items in a large database of sales transactions. We present two new algorithms for solving this problem that are fundamentally different from the known algorithms. Empirical evaluation shows that these algorithms outperform the known a ..."
Abstract

Cited by 3615 (15 self)
 Add to MetaCart
algorithms by factors ranging from three for small problems to more than an order of magnitude for large problems. We also show how the best features of the two proposed algorithms can be combined into a hybrid algorithm, called AprioriHybrid. Scaleup experiments show that AprioriHybrid scales linearly
Inverse Acoustic and Electromagnetic Scattering Theory, Second Edition
, 1998
"... Abstract. This paper is a survey of the inverse scattering problem for timeharmonic acoustic and electromagnetic waves at fixed frequency. We begin by a discussion of “weak scattering ” and Newtontype methods for solving the inverse scattering problem for acoustic waves, including a brief discussi ..."
Abstract

Cited by 1061 (45 self)
 Add to MetaCart
discussion of Tikhonov’s method for the numerical solution of illposed problems. We then proceed to prove a uniqueness theorem for the inverse obstacle problems for acoustic waves and the linear sampling method for reconstructing the shape of a scattering obstacle from far field data. Included in our
Results 1  10
of
1,805,070