Results 1 - 10
of
32,645
Interactive Deduplication using Active Learning
, 2002
"... Deduplication is a key operation in integrating data from multiple sources. The main challenge in this task is designing a function that can resolve when a pair of records refer to the same entity in spite of various data inconsistencies. Most existing systems use hand-coded functions. One way to ov ..."
Abstract
-
Cited by 242 (5 self)
- Add to MetaCart
-trivial because it requires manually searching for various data inconsistencies between any two records spread apart in large lists.
We present our design of a learning-based deduplication
system that uses a novel method of interactively discovering
challenging training pairs using active learning. Our
Gradient-based learning applied to document recognition
- Proceedings of the IEEE
, 1998
"... Multilayer neural networks trained with the back-propagation algorithm constitute the best example of a successful gradientbased learning technique. Given an appropriate network architecture, gradient-based learning algorithms can be used to synthesize a complex decision surface that can classify hi ..."
Abstract
-
Cited by 1533 (84 self)
- Add to MetaCart
Multilayer neural networks trained with the back-propagation algorithm constitute the best example of a successful gradientbased learning technique. Given an appropriate network architecture, gradient-based learning algorithms can be used to synthesize a complex decision surface that can classify
Example-based learning for view-based human face detection
- IEEE Transactions on Pattern Analysis and Machine Intelligence
, 1998
"... Abstract—We present an example-based learning approach for locating vertical frontal views of human faces in complex scenes. The technique models the distribution of human face patterns by means of a few view-based “face ” and “nonface ” model clusters. At each image location, a difference feature v ..."
Abstract
-
Cited by 690 (24 self)
- Add to MetaCart
for computing difference feature vectors, and the “nonface ” clusters we include in our distribution-based model, are both critical for the success of our system. Index Terms—Face detection, object detection, example-based learning, example selection, pattern recognition, view-based
Case-based reasoning; Foundational issues, methodological variations, and system approaches
- AI COMMUNICATIONS
, 1994
"... Case-based reasoning is a recent approach to problem solving and learning that has got a lot of attention over the last few years. Originating in the US, the basic idea and underlying theories have spread to other continents, and we are now within a period of highly active research in case-based rea ..."
Abstract
-
Cited by 855 (25 self)
- Add to MetaCart
in the light of a few example systems that represent different CBR approaches. We also discuss the role of case-based methods as one type of reasoning and learning method within an integrated system architecture.
Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory
, 1995
"... Damage to the hippocampal system disrupts recent memory but leaves remote memory intact. The account presented here suggests that memories are first stored via synaptic changes in the hippocampal system, that these changes support reinstatement of recent memories in the neocortex, that neocortical s ..."
Abstract
-
Cited by 675 (39 self)
- Add to MetaCart
synapses change a little on each reinstatement, and that remote memory is based on accumulated neocortical changes. Models that learn via changes to connections help explain this organization. These models discover the structure in ensembles of items if learning of each item is gradual and interleaved
BoosTexter: A Boosting-based System for Text Categorization
"... This work focuses on algorithms which learn from examples to perform multiclass text and speech categorization tasks. Our approach is based on a new and improved family of boosting algorithms. We describe in detail an implementation, called BoosTexter, of the new boosting algorithms for text catego ..."
Abstract
-
Cited by 667 (20 self)
- Add to MetaCart
This work focuses on algorithms which learn from examples to perform multiclass text and speech categorization tasks. Our approach is based on a new and improved family of boosting algorithms. We describe in detail an implementation, called BoosTexter, of the new boosting algorithms for text
A Bayesian computer vision system for modeling human interactions
- IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
, 2000
"... We describe a real-time computer vision and machine learning system for modeling and recognizing human behaviors in a visual surveillance task [1]. The system is particularly concerned with detecting when interactions between people occur and classifying the type of interaction. Examples of interes ..."
Abstract
-
Cited by 538 (6 self)
- Add to MetaCart
different state-based learning architectures, namely, HMMs and CHMMs for modeling behaviors and interactions. The CHMM model is shown to work much more efficiently and accurately. Finally, to deal with the problem of limited training data, a synthetic ªAlife-styleº training system is used to develop
Learning logical definitions from relations
- MACHINE LEARNING
, 1990
"... This paper describes FOIL, a system that learns Horn clauses from data expressed as relations. FOIL is based on ideas that have proved effective in attribute-value learning systems, but extends them to a first-order formalism. This new system has been applied successfully to several tasks taken fro ..."
Abstract
-
Cited by 935 (8 self)
- Add to MetaCart
This paper describes FOIL, a system that learns Horn clauses from data expressed as relations. FOIL is based on ideas that have proved effective in attribute-value learning systems, but extends them to a first-order formalism. This new system has been applied successfully to several tasks taken
Statistical phrase-based translation
, 2003
"... We propose a new phrase-based translation model and decoding algorithm that enables us to evaluate and compare several, previously proposed phrase-based translation models. Within our framework, we carry out a large number of experiments to understand better and explain why phrase-based models outpe ..."
Abstract
-
Cited by 944 (11 self)
- Add to MetaCart
outperform word-based models. Our empirical results, which hold for all examined language pairs, suggest that the highest levels of performance can be obtained through relatively simple means: heuristic learning of phrase translations from word-based alignments and lexical weighting of phrase translations
Hierarchical phrase-based translation
- Computational Linguistics
, 2007
"... We present a statistical machine translation model that uses hierarchical phrases—phrases that contain subphrases. The model is formally a synchronous context-free grammar but is learned from a parallel text without any syntactic annotations. Thus it can be seen as combining fundamental ideas from b ..."
Abstract
-
Cited by 597 (9 self)
- Add to MetaCart
both syntax-based translation and phrase-based translation. We describe our system’s training and decoding methods in detail, and evaluate it for translation speed and translation accuracy. Using BLEU as a metric of translation accuracy, we find that our system performs significantly better than
Results 1 - 10
of
32,645