Results 1  10
of
7,247
Graphical models, exponential families, and variational inference
, 2008
"... The formalism of probabilistic graphical models provides a unifying framework for capturing complex dependencies among random variables, and building largescale multivariate statistical models. Graphical models have become a focus of research in many statistical, computational and mathematical fiel ..."
Abstract

Cited by 819 (28 self)
 Add to MetaCart
The formalism of probabilistic graphical models provides a unifying framework for capturing complex dependencies among random variables, and building largescale multivariate statistical models. Graphical models have become a focus of research in many statistical, computational and mathematical
Learning in graphical models
 STATISTICAL SCIENCE
, 2004
"... Statistical applications in fields such as bioinformatics, information retrieval, speech processing, image processing and communications often involve largescale models in which thousands or millions of random variables are linked in complex ways. Graphical models provide a general methodology for ..."
Abstract

Cited by 806 (10 self)
 Add to MetaCart
Statistical applications in fields such as bioinformatics, information retrieval, speech processing, image processing and communications often involve largescale models in which thousands or millions of random variables are linked in complex ways. Graphical models provide a general methodology
A fast and flexible statistical model for largescale population genotype data: Applications to inferring missing genotypes and haplotype phase
 American Journal of Human Genetics
, 2005
"... We present a statistical model for patterns of genetic variation in samples of unrelated individuals from natural populations. This model is based on the idea that, over short regions, haplotypes in a population tend to cluster into groups of similar haplotypes. To capture the fact that, because of ..."
Abstract

Cited by 408 (10 self)
 Add to MetaCart
We present a statistical model for patterns of genetic variation in samples of unrelated individuals from natural populations. This model is based on the idea that, over short regions, haplotypes in a population tend to cluster into groups of similar haplotypes. To capture the fact that, because
The Dantzig selector: statistical estimation when p is much larger than n
, 2005
"... In many important statistical applications, the number of variables or parameters p is much larger than the number of observations n. Suppose then that we have observations y = Ax + z, where x ∈ R p is a parameter vector of interest, A is a data matrix with possibly far fewer rows than columns, n ≪ ..."
Abstract

Cited by 879 (14 self)
 Add to MetaCart
, where r is the residual vector y − A˜x and t is a positive scalar. We show that if A obeys a uniform uncertainty principle (with unitnormed columns) and if the true parameter vector x is sufficiently sparse (which here roughly guarantees that the model is identifiable), then with very large probability
ModelBased Clustering, Discriminant Analysis, and Density Estimation
 JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
, 2000
"... Cluster analysis is the automated search for groups of related observations in a data set. Most clustering done in practice is based largely on heuristic but intuitively reasonable procedures and most clustering methods available in commercial software are also of this type. However, there is little ..."
Abstract

Cited by 573 (29 self)
 Add to MetaCart
for modelbased clustering that provides a principled statistical approach to these issues. We also show that this can be useful for other problems in multivariate analysis, such as discriminant analysis and multivariate density estimation. We give examples from medical diagnosis, mineeld detection, cluster
Using Bayesian networks to analyze expression data
 Journal of Computational Biology
, 2000
"... DNA hybridization arrays simultaneously measure the expression level for thousands of genes. These measurements provide a “snapshot ” of transcription levels within the cell. A major challenge in computational biology is to uncover, from such measurements, gene/protein interactions and key biologica ..."
Abstract

Cited by 1088 (17 self)
 Add to MetaCart
biological features of cellular systems. In this paper, we propose a new framework for discovering interactions between genes based on multiple expression measurements. This framework builds on the use of Bayesian networks for representing statistical dependencies. A Bayesian network is a graphbased model
A Program for Aligning Sentences in Bilingual Corpora
, 1993
"... This paper will describe a method and a program (align) for aligning sentences based on a simple statistical model of character lengths. The program uses the fact that longer sentences in one language tend to be translated into longer sentences in the other language, and that shorter sentences tend ..."
Abstract

Cited by 529 (5 self)
 Add to MetaCart
This paper will describe a method and a program (align) for aligning sentences based on a simple statistical model of character lengths. The program uses the fact that longer sentences in one language tend to be translated into longer sentences in the other language, and that shorter sentences tend
Turbulence statistics in fully developed channel flow at low Reynolds number
 J. Fluid Mech
, 1987
"... A direct numerical simulation of a turbulent channel flow is performed. The unsteady NavierStokes equations are solved numerically at a Reynolds number of 3300, based on thc mean centreline velocity and channel halfwidth, with about 4 x los grid points (192 x 129 x 160 in 2, y, 2). All essential t ..."
Abstract

Cited by 395 (14 self)
 Add to MetaCart
turbulence scales are resolved on the computational grid and no subgrid model is used. A large number of turbulence statistics are computed and compared with the existing experimental data at comparable Reynolds numbers. Agreements as well as discrepancies are discussed in detail. Particular attention
Evolution of networks
 Adv. Phys
, 2002
"... We review the recent fast progress in statistical physics of evolving networks. Interest has focused mainly on the structural properties of random complex networks in communications, biology, social sciences and economics. A number of giant artificial networks of such a kind came into existence rece ..."
Abstract

Cited by 419 (3 self)
 Add to MetaCart
recently. This opens a wide field for the study of their topology, evolution, and complex processes occurring in them. Such networks possess a rich set of scaling properties. A number of them are scalefree and show striking resilience against random breakdowns. In spite of large sizes of these networks
An Empirical Bayes Approach to Inferring LargeScale Gene Association Networks
 BIOINFORMATICS
, 2004
"... Motivation: Genetic networks are often described statistically by graphical models (e.g. Bayesian networks). However, inferring the network structure offers a serious challenge in microarray analysis where the sample size is small compared to the number of considered genes. This renders many standar ..."
Abstract

Cited by 237 (6 self)
 Add to MetaCart
largescale gene association network for 3,883 genes. Availability: The authors have implemented the approach in the R package “GeneTS ” that is freely available from
Results 1  10
of
7,247