Results 1  10
of
45,229
Keywords—Genetic Algorithm based Neural Network, Fast
"... Breeder Test Reactor (FBTR) Subsystem. The parameter estimated here is temperature of Intermediate Heat Exchanger of Fast Breeder Test Reactor. Genetic Algorithm based Neural Network is a global search algorithm having less probability of being trapped in local minimum problem as compared to Standar ..."
Abstract
 Add to MetaCart
Breeder Test Reactor (FBTR) Subsystem. The parameter estimated here is temperature of Intermediate Heat Exchanger of Fast Breeder Test Reactor. Genetic Algorithm based Neural Network is a global search algorithm having less probability of being trapped in local minimum problem as compared
A comparative analysis of selection schemes used in genetic algorithms
 Foundations of Genetic Algorithms
, 1991
"... This paper considers a number of selection schemes commonly used in modern genetic algorithms. Specifically, proportionate reproduction, ranking selection, tournament selection, and Genitor (or «steady state") selection are compared on the basis of solutions to deterministic difference or d ..."
Abstract

Cited by 531 (31 self)
 Add to MetaCart
This paper considers a number of selection schemes commonly used in modern genetic algorithms. Specifically, proportionate reproduction, ranking selection, tournament selection, and Genitor (or «steady state") selection are compared on the basis of solutions to deterministic difference
Genetic Algorithms for Multiobjective Optimization: Formulation, Discussion and Generalization
, 1993
"... The paper describes a rankbased fitness assignment method for Multiple Objective Genetic Algorithms (MOGAs). Conventional niche formation methods are extended to this class of multimodal problems and theory for setting the niche size is presented. The fitness assignment method is then modified to a ..."
Abstract

Cited by 633 (15 self)
 Add to MetaCart
The paper describes a rankbased fitness assignment method for Multiple Objective Genetic Algorithms (MOGAs). Conventional niche formation methods are extended to this class of multimodal problems and theory for setting the niche size is presented. The fitness assignment method is then modified
Multiobjective Optimization Using Nondominated Sorting in Genetic Algorithms
 Evolutionary Computation
, 1994
"... In trying to solve multiobjective optimization problems, many traditional methods scalarize the objective vector into a single objective. In those cases, the obtained solution is highly sensitive to the weight vector used in the scalarization process and demands the user to have knowledge about t ..."
Abstract

Cited by 539 (5 self)
 Add to MetaCart
the underlying problem. Moreover, in solving multiobjective problems, designers may be interested in a set of Paretooptimal points, instead of a single point. Since genetic algorithms(GAs) work with a population of points, it seems natural to use GAs in multiobjective optimization problems to capture a
Genetic Programming
, 1997
"... Introduction Genetic programming is a domainindependent problemsolving approach in which computer programs are evolved to solve, or approximately solve, problems. Genetic programming is based on the Darwinian principle of reproduction and survival of the fittest and analogs of naturally occurring ..."
Abstract

Cited by 1056 (12 self)
 Add to MetaCart
is now called the genetic algorithm (GA). The genetic algorithm attempts to find a good (or best) solution to the problem by genetically breeding a population of individuals over a series of generations. In the genetic algorithm, each individual in the population represents a candidate solut
A Fast and Elitist MultiObjective Genetic Algorithm: NSGAII
, 2000
"... Multiobjective evolutionary algorithms which use nondominated sorting and sharing have been mainly criticized for their (i) O(MN computational complexity (where M is the number of objectives and N is the population size), (ii) nonelitism approach, and (iii) the need for specifying a sharing param ..."
Abstract

Cited by 1815 (60 self)
 Add to MetaCart
Multiobjective evolutionary algorithms which use nondominated sorting and sharing have been mainly criticized for their (i) O(MN computational complexity (where M is the number of objectives and N is the population size), (ii) nonelitism approach, and (iii) the need for specifying a sharing
A Fast Elitist NonDominated Sorting Genetic Algorithm for MultiObjective Optimization: NSGAII
, 2000
"... Multiobjective evolutionary algorithms which use nondominated sorting and sharing have been mainly criticized for their (i) 4 computational complexity (where is the number of objectives and is the population size), (ii) nonelitism approach, and (iii) the need for specifying a sharing ..."
Abstract

Cited by 662 (15 self)
 Add to MetaCart
Multiobjective evolutionary algorithms which use nondominated sorting and sharing have been mainly criticized for their (i) 4 computational complexity (where is the number of objectives and is the population size), (ii) nonelitism approach, and (iii) the need for specifying a
Mega: molecular evolutionary genetic analysis software for microcomputers
 CABIOS
, 1994
"... A computer program package called MEGA has been developed for estimating evolutionary distances, reconstructing phylogenetic trees and computing basic statistical quantities from molecular data. It is written in C+ + and is intended to be used on IBM and IBMcompatible personal computers. In this pr ..."
Abstract

Cited by 505 (10 self)
 Add to MetaCart
, new algorithms of branchandbound and heuristic searches are implemented. In addition, MEGA computes statistical quantities such as nucleotide and amino acid frequencies, transition/transversion biases, codon frequencies (codon usage tables), and the number of variable sites in specified segments
MEGA5: Molecular evolutionary genetics analysis using maximum . . .
, 2011
"... Comparative analysis of molecular sequence data is essential for reconstructing the evolutionary histories of species and inferring the nature and extent of selective forces shaping the evolution of genes and species. Here, we announce the release of Molecular Evolutionary Genetics Analysis version ..."
Abstract

Cited by 7284 (25 self)
 Add to MetaCart
Comparative analysis of molecular sequence data is essential for reconstructing the evolutionary histories of species and inferring the nature and extent of selective forces shaping the evolution of genes and species. Here, we announce the release of Molecular Evolutionary Genetics Analysis version
Particle swarm optimization
, 1995
"... A concept for the optimization of nonlinear functions using particle swarm methodology is introduced. The evolution of several paradigms is outlined, and an implementation of one of the paradigms is discussed. Benchmark testing of the paradigm is described, and applications, including nonlinear fun ..."
Abstract

Cited by 3769 (22 self)
 Add to MetaCart
function optimization and neural network training, are proposed. The relationships between particle swarm optimization and both artificial life and genetic algorithms are described.
Results 1  10
of
45,229