• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 90,688
Next 10 →

Depth-first Iterative-Deepening: An Optimal Admissible Tree Search

by Richard E. Korf - Artificial Intelligence , 1985
"... The complexities of various search algorithms are considered in terms of time, space, and cost of solution path. It is known that breadth-first search requires too much space and depth-first search can use too much time and doesn't always find a cheapest path. A depth-first iteratiw-deepening a ..."
Abstract - Cited by 527 (24 self) - Add to MetaCart
-deepening algorithm is shown to be asymptotically optimal along all three dimensions for exponential pee searches. The algorithm has been used successfully in chess programs, has been eflectiuely combined with bi-directional search, and has been applied to best-first heuristic search as well. This heuristic depth

Iterative decoding of binary block and convolutional codes

by Joachim Hagenauer, Elke Offer, Lutz Papke - IEEE TRANS. INFORM. THEORY , 1996
"... Iterative decoding of two-dimensional systematic convolutional codes has been termed “turbo” (de)coding. Using log-likelihood algebra, we show that any decoder can he used which accepts soft inputs-including a priori values-and delivers soft outputs that can he split into three terms: the soft chann ..."
Abstract - Cited by 610 (43 self) - Add to MetaCart
stop criterion derived from cross entropy, which results in a minimal number of iterations. Optimal and suboptimal decoders with reduced complexity are presented. Simulation results show that very simple component codes are sufficient, block codes are appropriate for high rates and convolutional codes

A fast iterative shrinkage-thresholding algorithm with application to . . .

by Amir Beck, Marc Teboulle , 2009
"... We consider the class of Iterative Shrinkage-Thresholding Algorithms (ISTA) for solving linear inverse problems arising in signal/image processing. This class of methods is attractive due to its simplicity, however, they are also known to converge quite slowly. In this paper we present a Fast Iterat ..."
Abstract - Cited by 1058 (9 self) - Add to MetaCart
We consider the class of Iterative Shrinkage-Thresholding Algorithms (ISTA) for solving linear inverse problems arising in signal/image processing. This class of methods is attractive due to its simplicity, however, they are also known to converge quite slowly. In this paper we present a Fast

CoSaMP: Iterative signal recovery from incomplete and inaccurate samples

by D. Needell, J. A. Tropp - California Institute of Technology, Pasadena , 2008
"... Abstract. Compressive sampling offers a new paradigm for acquiring signals that are compressible with respect to an orthonormal basis. The major algorithmic challenge in compressive sampling is to approximate a compressible signal from noisy samples. This paper describes a new iterative recovery alg ..."
Abstract - Cited by 770 (13 self) - Add to MetaCart
Abstract. Compressive sampling offers a new paradigm for acquiring signals that are compressible with respect to an orthonormal basis. The major algorithmic challenge in compressive sampling is to approximate a compressible signal from noisy samples. This paper describes a new iterative recovery

"GrabCut” -- interactive foreground extraction using iterated graph cuts

by Carsten Rother, Vladimir Kolmogorov, Andrew Blake - ACM TRANS. GRAPH , 2004
"... The problem of efficient, interactive foreground/background segmentation in still images is of great practical importance in image editing. Classical image segmentation tools use either texture (colour) information, e.g. Magic Wand, or edge (contrast) information, e.g. Intelligent Scissors. Recently ..."
Abstract - Cited by 1130 (36 self) - Add to MetaCart
. Recently, an approach based on optimization by graph-cut has been developed which successfully combines both types of information. In this paper we extend the graph-cut approach in three respects. First, we have developed a more powerful, iterative version of the optimisation. Secondly, the power

An iterative method for the solution of the eigenvalue problem of linear differential and integral

by Cornelius Lanczos , 1950
"... The present investigation designs a systematic method for finding the latent roots and the principal axes of a matrix, without reducing the order of the matrix. It is characterized by a wide field of applicability and great accuracy, since the accumulation of rounding errors is avoided, through the ..."
Abstract - Cited by 537 (0 self) - Add to MetaCart
the process of "minimized iterations". Moreover, the method leads to a well convergent successive approximation procedure by which the solution of integral equations of the Fredholm type and the solution of the eigenvalue problem of linear differential and integral operators may be accomplished. I.

The Ant System: Optimization by a colony of cooperating agents

by Marco Dorigo, Vittorio Maniezzo, Alberto Colorni - IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS-PART B , 1996
"... An analogy with the way ant colonies function has suggested the definition of a new computational paradigm, which we call Ant System. We propose it as a viable new approach to stochastic combinatorial optimization. The main characteristics of this model are positive feedback, distributed computation ..."
Abstract - Cited by 1300 (46 self) - Add to MetaCart
An analogy with the way ant colonies function has suggested the definition of a new computational paradigm, which we call Ant System. We propose it as a viable new approach to stochastic combinatorial optimization. The main characteristics of this model are positive feedback, distributed

Multiobjective Optimization Using Nondominated Sorting in Genetic Algorithms

by N. Srinivas, Kalyanmoy Deb - Evolutionary Computation , 1994
"... In trying to solve multiobjective optimization problems, many traditional methods scalarize the objective vector into a single objective. In those cases, the obtained solution is highly sensitive to the weight vector used in the scalarization process and demands the user to have knowledge about t ..."
Abstract - Cited by 539 (5 self) - Add to MetaCart
In trying to solve multiobjective optimization problems, many traditional methods scalarize the objective vector into a single objective. In those cases, the obtained solution is highly sensitive to the weight vector used in the scalarization process and demands the user to have knowledge about

Pregel: A system for large-scale graph processing

by Grzegorz Malewicz, Matthew H. Austern, Aart J. C. Bik, James C. Dehnert, Ilan Horn, Naty Leiser, Grzegorz Czajkowski - IN SIGMOD , 2010
"... Many practical computing problems concern large graphs. Standard examples include the Web graph and various social networks. The scale of these graphs—in some cases billions of vertices, trillions of edges—poses challenges to their efficient processing. In this paper we present a computational model ..."
Abstract - Cited by 496 (0 self) - Add to MetaCart
Many practical computing problems concern large graphs. Standard examples include the Web graph and various social networks. The scale of these graphs—in some cases billions of vertices, trillions of edges—poses challenges to their efficient processing. In this paper we present a computational

Tinydb: An acquisitional query processing system for sensor networks

by Samuel R. Madden, Michael J. Franklin, Joseph M. Hellerstein, Wei Hong - ACM Trans. Database Syst , 2005
"... We discuss the design of an acquisitional query processor for data collection in sensor networks. Acquisitional issues are those that pertain to where, when, and how often data is physically acquired (sampled) and delivered to query processing operators. By focusing on the locations and costs of acq ..."
Abstract - Cited by 626 (8 self) - Add to MetaCart
We discuss the design of an acquisitional query processor for data collection in sensor networks. Acquisitional issues are those that pertain to where, when, and how often data is physically acquired (sampled) and delivered to query processing operators. By focusing on the locations and costs
Next 10 →
Results 1 - 10 of 90,688
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University