Results 1  10
of
1,803
Interiorpoint Methods
, 2000
"... The modern era of interiorpoint methods dates to 1984, when Karmarkar proposed his algorithm for linear programming. In the years since then, algorithms and software for linear programming have become quite sophisticated, while extensions to more general classes of problems, such as convex quadrati ..."
Abstract

Cited by 612 (15 self)
 Add to MetaCart
The modern era of interiorpoint methods dates to 1984, when Karmarkar proposed his algorithm for linear programming. In the years since then, algorithms and software for linear programming have become quite sophisticated, while extensions to more general classes of problems, such as convex
Interior Point Methods in Semidefinite Programming with Applications to Combinatorial Optimization
 SIAM Journal on Optimization
, 1993
"... We study the semidefinite programming problem (SDP), i.e the problem of optimization of a linear function of a symmetric matrix subject to linear equality constraints and the additional condition that the matrix be positive semidefinite. First we review the classical cone duality as specialized to S ..."
Abstract

Cited by 547 (12 self)
 Add to MetaCart
to SDP. Next we present an interior point algorithm which converges to the optimal solution in polynomial time. The approach is a direct extension of Ye's projective method for linear programming. We also argue that most known interior point methods for linear programs can be transformed in a
Improving ultimate convergence of an Augmented Lagrangian method
, 2007
"... Optimization methods that employ the classical PowellHestenesRockafellar Augmented Lagrangian are useful tools for solving Nonlinear Programming problems. Their reputation decreased in the last ten years due to the comparative success of InteriorPoint Newtonian algorithms, which are asymptoticall ..."
Abstract

Cited by 14 (0 self)
 Add to MetaCart
Optimization methods that employ the classical PowellHestenesRockafellar Augmented Lagrangian are useful tools for solving Nonlinear Programming problems. Their reputation decreased in the last ten years due to the comparative success of InteriorPoint Newtonian algorithms, which
Control Problems with Equality Constraints
"... Optimization methods that employ the classical PowellHestenesRockafellar Augmented Lagrangian are useful tools for solving Nonlinear Programming problems. Their reputation decreased in the last ten years due to the comparative success of InteriorPoint Newtonian algorithms, which are asymptoticall ..."
Abstract
 Add to MetaCart
Optimization methods that employ the classical PowellHestenesRockafellar Augmented Lagrangian are useful tools for solving Nonlinear Programming problems. Their reputation decreased in the last ten years due to the comparative success of InteriorPoint Newtonian algorithms, which
A NEW POLYNOMIALTIME ALGORITHM FOR LINEAR PROGRAMMING
 COMBINATORICA
, 1984
"... We present a new polynomialtime algorithm for linear programming. In the worst case, the algorithm requires O(tf'SL) arithmetic operations on O(L) bit numbers, where n is the number of variables and L is the number of bits in the input. The running,time of this algorithm is better than the ell ..."
Abstract

Cited by 860 (3 self)
 Add to MetaCart
the ellipsoid algorithm by a factor of O(n~'~). We prove that given a polytope P and a strictly interior point a E P, there is a projective transformation of the space that maps P, a to P', a ' having the following property. The ratio of the radius of the smallest sphere with center a
A Singular Value Thresholding Algorithm for Matrix Completion
, 2008
"... This paper introduces a novel algorithm to approximate the matrix with minimum nuclear norm among all matrices obeying a set of convex constraints. This problem may be understood as the convex relaxation of a rank minimization problem, and arises in many important applications as in the task of reco ..."
Abstract

Cited by 555 (22 self)
 Add to MetaCart
of recovering a large matrix from a small subset of its entries (the famous Netflix problem). Offtheshelf algorithms such as interior point methods are not directly amenable to large problems of this kind with over a million unknown entries. This paper develops a simple firstorder and easy
An InteriorPoint Algorithm For Nonconvex Nonlinear Programming
 COMPUTATIONAL OPTIMIZATION AND APPLICATIONS
, 1997
"... The paper describes an interiorpoint algorithm for nonconvex nonlinear programming which is a direct extension of interiorpoint methods for linear and quadratic programming. Major modifications include a merit function and an altered search direction to ensure that a descent direction for the mer ..."
Abstract

Cited by 199 (14 self)
 Add to MetaCart
The paper describes an interiorpoint algorithm for nonconvex nonlinear programming which is a direct extension of interiorpoint methods for linear and quadratic programming. Major modifications include a merit function and an altered search direction to ensure that a descent direction
On the Implementation of an InteriorPoint Filter LineSearch Algorithm for LargeScale Nonlinear Programming
, 2004
"... We present a primaldual interiorpoint algorithm with a filter linesearch method for nonlinear programming. Local and global convergence properties of this method were analyzed in previous work. Here we provide a comprehensive description of the algorithm, including the feasibility restoration ph ..."
Abstract

Cited by 294 (6 self)
 Add to MetaCart
We present a primaldual interiorpoint algorithm with a filter linesearch method for nonlinear programming. Local and global convergence properties of this method were analyzed in previous work. Here we provide a comprehensive description of the algorithm, including the feasibility restoration
Multiple kernel learning, conic duality, and the SMO algorithm
 In Proceedings of the 21st International Conference on Machine Learning (ICML
, 2004
"... While classical kernelbased classifiers are based on a single kernel, in practice it is often desirable to base classifiers on combinations of multiple kernels. Lanckriet et al. (2004) considered conic combinations of kernel matrices for the support vector machine (SVM), and showed that the optimiz ..."
Abstract

Cited by 445 (31 self)
 Add to MetaCart
the technique of MoreauYosida regularization to yield a formulation to which SMO techniques can be applied. We present experimental results that show that our SMObased algorithm is significantly more efficient than the generalpurpose interior point methods available in current optimization toolboxes. 1.
Results 1  10
of
1,803