Results 1 - 10
of
21,175
SIMPLIcity: Semantics-Sensitive Integrated Matching for Picture LIbraries
- IEEE Transactions on Pattern Analysis and Machine Intelligence
, 2001
"... The need for efficient content-based image retrieval has increased tremendously in many application areas such as biomedicine, military, commerce, education, and Web image classification and searching. We present here SIMPLIcity (Semanticssensitive Integrated Matching for Picture LIbraries), an imag ..."
Abstract
-
Cited by 551 (35 self)
- Add to MetaCart
The need for efficient content-based image retrieval has increased tremendously in many application areas such as biomedicine, military, commerce, education, and Web image classification and searching. We present here SIMPLIcity (Semanticssensitive Integrated Matching for Picture LIbraries
A volumetric method for building complex models from range images,”
- in Proceedings of the 23rd annual conference on Computer graphics and interactive techniques. ACM,
, 1996
"... Abstract A number of techniques have been developed for reconstructing surfaces by integrating groups of aligned range images. A desirable set of properties for such algorithms includes: incremental updating, representation of directional uncertainty, the ability to fill gaps in the reconstruction, ..."
Abstract
-
Cited by 1020 (17 self)
- Add to MetaCart
Abstract A number of techniques have been developed for reconstructing surfaces by integrating groups of aligned range images. A desirable set of properties for such algorithms includes: incremental updating, representation of directional uncertainty, the ability to fill gaps in the reconstruction
SURF: Speeded Up Robust Features
- ECCV
"... Abstract. In this paper, we present a novel scale- and rotation-invariant interest point detector and descriptor, coined SURF (Speeded Up Ro-bust Features). It approximates or even outperforms previously proposed schemes with respect to repeatability, distinctiveness, and robustness, yet can be comp ..."
Abstract
-
Cited by 897 (12 self)
- Add to MetaCart
be computed and compared much faster. This is achieved by relying on integral images for image convolutions; by building on the strengths of the leading existing detectors and descrip-tors (in casu, using a Hessian matrix-based measure for the detector, and a distribution-based descriptor); and by simplifying
Rapid object detection using a boosted cascade of simple features
- ACCEPTED CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION 2001
, 2001
"... This paper describes a machine learning approach for visual object detection which is capable of processing images extremely rapidly and achieving high detection rates. This work is distinguished by three key contributions. The first is the introduction of a new image representation called the " ..."
Abstract
-
Cited by 3283 (9 self)
- Add to MetaCart
the "Integral Image" which allows the features used by our detector to be computed very quickly. The second is a learning algorithm, based on AdaBoost, which selects a small number of critical visual features from a larger set and yields extremely efficient classifiers[6]. The third contribution
Detecting Pedestrians Using Patterns of Motion and Appearance
- IN ICCV
, 2003
"... This paper describes a pedestrian detection system that integrates image intensity information with motion information. We use a detection style algorithm that scans a detector over two consecutive frames of a video sequence. The detector is trained (using AdaBoost) to take advantage of both moti ..."
Abstract
-
Cited by 575 (3 self)
- Add to MetaCart
This paper describes a pedestrian detection system that integrates image intensity information with motion information. We use a detection style algorithm that scans a detector over two consecutive frames of a video sequence. The detector is trained (using AdaBoost) to take advantage of both
Robust Real-time Object Detection
- International Journal of Computer Vision
, 2001
"... This paper describes a visual object detection framework that is capable of processing images extremely rapidly while achieving high detection rates. There are three key contributions. The first is the introduction of a new image representation called the “Integral Image ” which allows the features ..."
Abstract
-
Cited by 1184 (4 self)
- Add to MetaCart
This paper describes a visual object detection framework that is capable of processing images extremely rapidly while achieving high detection rates. There are three key contributions. The first is the introduction of a new image representation called the “Integral Image ” which allows the features
Unsupervised texture segmentation using Gabor filters
- Pattern Recognition
"... We presenf a texture segmentation algorithm inspired by the multi-channel filtering theory for visual information processing in the early stages of human visual system. The channels are characterized by a bank of Gabor filters that nearly uniformly covers the spatial-frequency domain. We propose a s ..."
Abstract
-
Cited by 616 (20 self)
- Add to MetaCart
-emr clustering algorithm is then used to integrate the feature images and produce a segmentation. A simple procedure to incorporate spatial adjacency information in the clustering process is also proposed. We report experiments on images with natural textures as well as artificial textures with identical 2nd
Robust real-time face detection
- International Journal of Computer Vision
, 2004
"... We have constructed a frontal face detection system which achieves detection and false positive rates which are equivalent to the best published results [7, 5, 6, 4, 1]. This face detection system is most clearly distinguished from previous approaches in its ability to detect faces extremely rapidly ..."
Abstract
-
Cited by 1888 (9 self)
- Add to MetaCart
rates. Our system achieves high frame rates working only with the information present in a single grey scale image. These alternative sources of information can also be integrated with our system to achieve even higher frame rates.
Nonlinear component analysis as a kernel eigenvalue problem
-
, 1996
"... We describe a new method for performing a nonlinear form of Principal Component Analysis. By the use of integral operator kernel functions, we can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map; for instance the space of all ..."
Abstract
-
Cited by 1573 (83 self)
- Add to MetaCart
We describe a new method for performing a nonlinear form of Principal Component Analysis. By the use of integral operator kernel functions, we can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map; for instance the space of all
A computational approach to edge detection
- IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
, 1986
"... This paper describes a computational approach to edge detection. The success of the approach depends on the definition of a comprehensive set of goals for the computation of edge points. These goals must be precise enough to delimit the desired behavior of the detector while making minimal assumpti ..."
Abstract
-
Cited by 4675 (0 self)
- Add to MetaCart
with different signal-to-noise ratios in the image. We present a general method, called feature synthesis, for the fine-to-coarse integration of information from operators at different scales. Finally we show that step edge detector performance improves considerably as the operator point spread function
Results 1 - 10
of
21,175