Results 1  10
of
3,426,006
A gentle tutorial on the EM algorithm and its application to parameter estimation for gaussian mixture and hidden markov models
, 1997
"... We describe the maximumlikelihood parameter estimation problem and how the Expectationform of the EM algorithm as it is often given in the literature. We then develop the EM parameter estimation procedure for two applications: 1) finding the parameters of a mixture of Gaussian densities, and 2) fi ..."
Abstract

Cited by 692 (4 self)
 Add to MetaCart
) finding the parameters of a hidden Markov model (HMM) (i.e., the BaumWelch algorithm) for both discrete and Gaussian mixture observation models. We derive the update equations in fairly explicit detail but we do not prove any convergence properties. We try to emphasize intuition rather than mathematical
Active Appearance Models.
 IEEE Transactions on Pattern Analysis and Machine Intelligence,
, 2001
"... AbstractÐWe describe a new method of matching statistical models of appearance to images. A set of model parameters control modes of shape and graylevel variation learned from a training set. We construct an efficient iterative matching algorithm by learning the relationship between perturbations ..."
Abstract

Cited by 2153 (59 self)
 Add to MetaCart
AbstractÐWe describe a new method of matching statistical models of appearance to images. A set of model parameters control modes of shape and graylevel variation learned from a training set. We construct an efficient iterative matching algorithm by learning the relationship between perturbations
A Model of Investor Sentiment
 Journal of Financial Economics
, 1998
"... Recent empirical research in finance has uncovered two families of pervasive regularities: underreaction of stock prices to news such as earnings announcements, and overreaction of stock prices to a series of good or bad news. In this paper, we present a parsimonious model of investor sentiment, or ..."
Abstract

Cited by 774 (32 self)
 Add to MetaCart
, or of how investors form beliefs, which is consistent with the empirical findings. The model is based on psychological evidence and produces both underreaction and overreaction for a wide range of parameter values. � 1998 Elsevier Science S.A. All rights reserved. JEL classification: G12; G14
The Infinite Hidden Markov Model
 Machine Learning
, 2002
"... We show that it is possible to extend hidden Markov models to have a countably infinite number of hidden states. By using the theory of Dirichlet processes we can implicitly integrate out the infinitely many transition parameters, leaving only three hyperparameters which can be learned from data. Th ..."
Abstract

Cited by 638 (41 self)
 Add to MetaCart
We show that it is possible to extend hidden Markov models to have a countably infinite number of hidden states. By using the theory of Dirichlet processes we can implicitly integrate out the infinitely many transition parameters, leaving only three hyperparameters which can be learned from data
Hierarchical Models of Object Recognition in Cortex
, 1999
"... The classical model of visual processing in cortex is a hierarchy of increasingly sophisticated representations, extending in a natural way the model of simple to complex cells of Hubel and Wiesel. Somewhat surprisingly, little quantitative modeling has been done in the last 15 years to explore th ..."
Abstract

Cited by 836 (84 self)
 Add to MetaCart
predictions. The model is based on a novel MAXlike operation on the inputs to certain cortical neurons which may have a general role in cortical function.
Learning probabilistic relational models
 In IJCAI
, 1999
"... A large portion of realworld data is stored in commercial relational database systems. In contrast, most statistical learning methods work only with "flat " data representations. Thus, to apply these methods, we are forced to convert our data into a flat form, thereby losing much ..."
Abstract

Cited by 612 (30 self)
 Add to MetaCart
objects. Although PRMs are significantly more expressive than standard models, such as Bayesian networks, we show how to extend wellknown statistical methods for learning Bayesian networks to learn these models. We describe both parameter estimation and structure learning — the automatic induction
Hidden Markov models in computational biology: applications to protein modeling
 JOURNAL OF MOLECULAR BIOLOGY
, 1994
"... Hidden.Markov Models (HMMs) are applied t.0 the problems of statistical modeling, database searching and multiple sequence alignment of protein families and protein domains. These methods are demonstrated the on globin family, the protein kinase catalytic domain, and the EFhand calcium binding moti ..."
Abstract

Cited by 655 (39 self)
 Add to MetaCart
Hidden.Markov Models (HMMs) are applied t.0 the problems of statistical modeling, database searching and multiple sequence alignment of protein families and protein domains. These methods are demonstrated the on globin family, the protein kinase catalytic domain, and the EFhand calcium binding
What is a hidden Markov model?
, 2004
"... Often, problems in biological sequence analysis are just a matter of putting the right label on each residue. In gene identification, we want to label nucleotides as exons, introns, or intergenic sequence. In sequence alignment, we want to associate residues in a query sequence with homologous resi ..."
Abstract

Cited by 1340 (8 self)
 Add to MetaCart
splice site consenses, codon bias, exon/intron length preferences, and open reading frame analysis all in one scoring system. How should all those parameters be set? How should different kinds of information be weighted? A second issue is being able to interpret results probabilistically. Finding a best
Longitudinal data analysis using generalized linear models”.
 Biometrika,
, 1986
"... SUMMARY This paper proposes an extension of generalized linear models to the analysis of longitudinal data. We introduce a class of estimating equations that give consistent estimates of the regression parameters and of their variance under mild assumptions about the time dependence. The estimating ..."
Abstract

Cited by 1519 (8 self)
 Add to MetaCart
SUMMARY This paper proposes an extension of generalized linear models to the analysis of longitudinal data. We introduce a class of estimating equations that give consistent estimates of the regression parameters and of their variance under mild assumptions about the time dependence
A distributed, developmental model of word recognition and naming
 PSYCHOLOGICAL REVIEW
, 1989
"... A parallel distributed processing model of visual word recognition and pronunciation is described. The model consists of sets of orthographic and phonological units and an interlevel of hidden units. Weights on connections between units were modified during a training phase using the backpropagatio ..."
Abstract

Cited by 703 (49 self)
 Add to MetaCart
is simulated without pronunciation rules, and lexical decisions are simulated without accessing wordlevel representations. The performance of the model is largely determined by three factors: the nature of the input, a significant fragment of written English; the learning rule, which encodes the implicit
Results 1  10
of
3,426,006