Results 1  10
of
396,998
Clustering by passing messages between data points
 Science
, 2007
"... Clustering data by identifying a subset of representative examples is important for processing sensory signals and detecting patterns in data. Such “exemplars ” can be found by randomly choosing an initial subset of data points and then iteratively refining it, but this works well only if that initi ..."
Abstract

Cited by 696 (8 self)
 Add to MetaCart
Clustering data by identifying a subset of representative examples is important for processing sensory signals and detecting patterns in data. Such “exemplars ” can be found by randomly choosing an initial subset of data points and then iteratively refining it, but this works well only
Similarity Flooding: A Versatile Graph Matching Algorithm and Its Application to Schema Matching
, 2002
"... Matching elements of two data schemas or two data instances plays a key role in data warehousing, ebusiness, or even biochemical applications. In this paper we present a matching algorithm based on a fixpoint computation that is usable across different scenarios. The algorithm takes two graphs (sch ..."
Abstract

Cited by 592 (12 self)
 Add to MetaCart
(schemas, catalogs, or other data structures) as input, and produces as output a mapping between corresponding nodes of the graphs. Depending on the matching goal, a subset of the mapping is chosen using filters. After our algorithm runs, we expect a human to check and if necessary adjust the results. As a
GPSLess Low Cost Outdoor Localization for Very Small Devices.
 IEEE Personal Communications Magazine,
, 2000
"... AbstractInstrumenting the physical world through large networks of wireless sensor nodes, particularly for applications like environmental monitoring of water and soil, requires that these nodes be very small, light, untethered and unobtrusive. The problem of localization, i.e., determining where ..."
Abstract

Cited by 1000 (27 self)
 Add to MetaCart
in the network with overlapping regions of coverage transmit periodic beacon signals. Nodes use a simple connectivity metric, that is more robust to environmental vagaries, to infer proximity to a given subset of these reference points. Nodes localize themselves to the centroid of their proximate reference
Iterative point matching for registration of freeform curves and surfaces
, 1994
"... A heuristic method has been developed for registering two sets of 3D curves obtained by using an edgebased stereo system, or two dense 3D maps obtained by using a correlationbased stereo system. Geometric matching in general is a difficult unsolved problem in computer vision. Fortunately, in ma ..."
Abstract

Cited by 660 (8 self)
 Add to MetaCart
, in many practical applications, some a priori knowledge exists which considerably simplifies the problem. In visual navigation, for example, the motion between successive positions is usually approximately known. From this initial estimate, our algorithm computes observer motion with very good precision
Loopy belief propagation for approximate inference: An empirical study. In:
 Proceedings of Uncertainty in AI,
, 1999
"... Abstract Recently, researchers have demonstrated that "loopy belief propagation" the use of Pearl's polytree algorithm in a Bayesian network with loops can perform well in the context of errorcorrecting codes. The most dramatic instance of this is the near Shannonlimit performanc ..."
Abstract

Cited by 676 (15 self)
 Add to MetaCart
to the correct marginals. However, on the QMR network, the loopy be liefs oscillated and had no obvious relation ship to the correct posteriors. We present some initial investigations into the cause of these oscillations, and show that some sim ple methods of preventing them lead to the wrong results
Toward optimal feature selection
 In 13th International Conference on Machine Learning
, 1995
"... In this paper, we examine a method for feature subset selection based on Information Theory. Initially, a framework for de ning the theoretically optimal, but computationally intractable, method for feature subset selection is presented. We show that our goal should be to eliminate a feature if it g ..."
Abstract

Cited by 480 (9 self)
 Add to MetaCart
In this paper, we examine a method for feature subset selection based on Information Theory. Initially, a framework for de ning the theoretically optimal, but computationally intractable, method for feature subset selection is presented. We show that our goal should be to eliminate a feature
A distributed algorithm for minimumweight spanning trees
, 1983
"... A distributed algorithm is presented that constructs he minimumweight spanning tree in a connected undirected graph with distinct edge weights. A processor exists at each node of the graph, knowing initially only the weights of the adjacent edges. The processors obey the same algorithm and exchange ..."
Abstract

Cited by 435 (3 self)
 Add to MetaCart
and exchange messages with neighbors until the tree is constructed. The total number of messages required for a graph of N nodes and E edges is at most 5N log2N + 2E, and a message contains at most one edge weight plus log28N bits. The algorithm can be initiated spontaneously at any node or at any subset
Transis: A Communication SubSystem for High Availability
, 1992
"... This paper describes Transis, a communication subsystem for high availability. Transis is a transport layer package that supports a variety of reliable multicast message passing services between processors. It provides highly tuned multicast and control services for scalable systems with arbitrary ..."
Abstract

Cited by 363 (47 self)
 Add to MetaCart
topology. The communication domain comprises of a set of processors that can initiate multicast messages to a chosen subset. Transis delivers them reliably and maintains the membership of connected processors automatically, in the presence of arbitrary communication delays, of message losses
Support Vector Method for Function Approximation, Regression Estimation, and Signal Processing
 Advances in Neural Information Processing Systems 9
, 1996
"... The Support Vector (SV) method was recently proposed for estimating regressions, constructing multidimensional splines, and solving linear operator equations [Vapnik, 1995]. In this presentation we report results of applying the SV method to these problems. 1 Introduction The Support Vector method i ..."
Abstract

Cited by 292 (24 self)
 Add to MetaCart
is a universal tool for solving multidimensional function estimation problems. Initially it was designed to solve pattern recognition problems, where in order to find a decision rule with good generalization ability one selects some (small) subset of the training data, called the Support Vectors (SVs
Results 1  10
of
396,998