Results 1  10
of
5,329
Towards IndustrialLike Random SAT Instances
, 2009
"... We focus on the random generation of SAT instances that have computational properties that are similar to realworld instances. It is known that industrial instances, even with a great number of variables, can be solved by a clever solver in a reasonable amount of time. This is not possible, in gene ..."
Abstract

Cited by 6 (3 self)
 Add to MetaCart
We focus on the random generation of SAT instances that have computational properties that are similar to realworld instances. It is known that industrial instances, even with a great number of variables, can be solved by a clever solver in a reasonable amount of time. This is not possible
SemiSupervised Learning Using Gaussian Fields and Harmonic Functions
 IN ICML
, 2003
"... An approach to semisupervised learning is proposed that is based on a Gaussian random field model. Labeled and unlabeled data are represented as vertices in a weighted graph, with edge weights encoding the similarity between instances. The learning ..."
Abstract

Cited by 752 (14 self)
 Add to MetaCart
An approach to semisupervised learning is proposed that is based on a Gaussian random field model. Labeled and unlabeled data are represented as vertices in a weighted graph, with edge weights encoding the similarity between instances. The learning
Support Vector Machine Active Learning with Applications to Text Classification
 JOURNAL OF MACHINE LEARNING RESEARCH
, 2001
"... Support vector machines have met with significant success in numerous realworld learning tasks. However, like most machine learning algorithms, they are generally applied using a randomly selected training set classified in advance. In many settings, we also have the option of using poolbased acti ..."
Abstract

Cited by 735 (5 self)
 Add to MetaCart
Support vector machines have met with significant success in numerous realworld learning tasks. However, like most machine learning algorithms, they are generally applied using a randomly selected training set classified in advance. In many settings, we also have the option of using pool
Learning in graphical models
 STATISTICAL SCIENCE
, 2004
"... Statistical applications in fields such as bioinformatics, information retrieval, speech processing, image processing and communications often involve largescale models in which thousands or millions of random variables are linked in complex ways. Graphical models provide a general methodology for ..."
Abstract

Cited by 806 (10 self)
 Add to MetaCart
Statistical applications in fields such as bioinformatics, information retrieval, speech processing, image processing and communications often involve largescale models in which thousands or millions of random variables are linked in complex ways. Graphical models provide a general methodology
Depthfirst IterativeDeepening: An Optimal Admissible Tree Search
 Artificial Intelligence
, 1985
"... The complexities of various search algorithms are considered in terms of time, space, and cost of solution path. It is known that breadthfirst search requires too much space and depthfirst search can use too much time and doesn't always find a cheapest path. A depthfirst iteratiwdeepening a ..."
Abstract

Cited by 527 (24 self)
 Add to MetaCart
first iteratiwdeepening algorithm is the only known algorithm that is capable of finding optimal solutions to randomly generated instances of the Fifeen Puzzle within practical resource limits. 1.
Factor Graphs and the SumProduct Algorithm
 IEEE TRANSACTIONS ON INFORMATION THEORY
, 1998
"... A factor graph is a bipartite graph that expresses how a "global" function of many variables factors into a product of "local" functions. Factor graphs subsume many other graphical models including Bayesian networks, Markov random fields, and Tanner graphs. Following one simple c ..."
Abstract

Cited by 1791 (69 self)
 Add to MetaCart
A factor graph is a bipartite graph that expresses how a "global" function of many variables factors into a product of "local" functions. Factor graphs subsume many other graphical models including Bayesian networks, Markov random fields, and Tanner graphs. Following one simple
Graphical models, exponential families, and variational inference
, 2008
"... The formalism of probabilistic graphical models provides a unifying framework for capturing complex dependencies among random variables, and building largescale multivariate statistical models. Graphical models have become a focus of research in many statistical, computational and mathematical fiel ..."
Abstract

Cited by 819 (28 self)
 Add to MetaCart
The formalism of probabilistic graphical models provides a unifying framework for capturing complex dependencies among random variables, and building largescale multivariate statistical models. Graphical models have become a focus of research in many statistical, computational and mathematical
The strength of weak learnability
 MACHINE LEARNING
, 1990
"... This paper addresses the problem of improving the accuracy of an hypothesis output by a learning algorithm in the distributionfree (PAC) learning model. A concept class is learnable (or strongly learnable) if, given access to a Source of examples of the unknown concept, the learner with high prob ..."
Abstract

Cited by 871 (26 self)
 Add to MetaCart
probability is able to output an hypothesis that is correct on all but an arbitrarily small fraction of the instances. The concept class is weakly learnable if the learner can produce an hypothesis that performs only slightly better than random guessing. In this paper, it is shown that these two notions
Guaranteed minimumrank solutions of linear matrix equations via nuclear norm minimization,”
 SIAM Review,
, 2010
"... Abstract The affine rank minimization problem consists of finding a matrix of minimum rank that satisfies a given system of linear equality constraints. Such problems have appeared in the literature of a diverse set of fields including system identification and control, Euclidean embedding, and col ..."
Abstract

Cited by 562 (20 self)
 Add to MetaCart
, and collaborative filtering. Although specific instances can often be solved with specialized algorithms, the general affine rank minimization problem is NPhard, because it contains vector cardinality minimization as a special case. In this paper, we show that if a certain restricted isometry property holds
Stable signal recovery from incomplete and inaccurate measurements,”
 Comm. Pure Appl. Math.,
, 2006
"... Abstract Suppose we wish to recover a vector x 0 ∈ R m (e.g., a digital signal or image) from incomplete and contaminated observations y = Ax 0 + e; A is an n × m matrix with far fewer rows than columns (n m) and e is an error term. Is it possible to recover x 0 accurately based on the data y? To r ..."
Abstract

Cited by 1397 (38 self)
 Add to MetaCart
, suppose that A is a Gaussian random matrix; then stable recovery occurs for almost all such A's provided that the number of nonzeros of x 0 is of about the same order as the number of observations. As a second instance, suppose one observes few Fourier samples of x 0 ; then stable recovery occurs
Results 1  10
of
5,329