• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 6,770
Next 10 →

Model-Based Clustering, Discriminant Analysis, and Density Estimation

by Chris Fraley, Adrian E. Raftery - JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION , 2000
"... Cluster analysis is the automated search for groups of related observations in a data set. Most clustering done in practice is based largely on heuristic but intuitively reasonable procedures and most clustering methods available in commercial software are also of this type. However, there is little ..."
Abstract - Cited by 573 (29 self) - Add to MetaCart
for model-based clustering that provides a principled statistical approach to these issues. We also show that this can be useful for other problems in multivariate analysis, such as discriminant analysis and multivariate density estimation. We give examples from medical diagnosis, mineeld detection, cluster

Tabu Search -- Part I

by Fred Glover , 1989
"... This paper presents the fundamental principles underlying tabu search as a strategy for combinatorial optimization problems. Tabu search has achieved impressive practical successes in applications ranging from scheduling and computer channel balancing to cluster analysis and space planning, and more ..."
Abstract - Cited by 680 (11 self) - Add to MetaCart
This paper presents the fundamental principles underlying tabu search as a strategy for combinatorial optimization problems. Tabu search has achieved impressive practical successes in applications ranging from scheduling and computer channel balancing to cluster analysis and space planning

Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach

by Eckart Zitzler, Lothar Thiele - IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION , 1999
"... Evolutionary algorithms (EA’s) are often well-suited for optimization problems involving several, often conflicting objectives. Since 1985, various evolutionary approaches to multiobjective optimization have been developed that are capable of searching for multiple solutions concurrently in a singl ..."
Abstract - Cited by 813 (22 self) - Add to MetaCart
) evaluating an individual’s fitness dependent on the number of external nondominated points that dominate it, c) preserving population diversity using the Pareto dominance relationship, and d) incorporating a clustering procedure in order to reduce the nondominated set without destroying its characteristics

Features of similarity.

by Amos Tversky - Psychological Review , 1977
"... Similarity plays a fundamental role in theories of knowledge and behavior. It serves as an organizing principle by which individuals classify objects, form concepts, and make generalizations. Indeed, the concept of similarity is ubiquitous in psychological theory. It underlies the accounts of stimu ..."
Abstract - Cited by 1455 (2 self) - Add to MetaCart
Similarity plays a fundamental role in theories of knowledge and behavior. It serves as an organizing principle by which individuals classify objects, form concepts, and make generalizations. Indeed, the concept of similarity is ubiquitous in psychological theory. It underlies the accounts

Bootstrap-Based Improvements for Inference with Clustered Errors

by A. Colin Cameron, Jonah B. Gelbach, Douglas L. Miller , 2006
"... Microeconometrics researchers have increasingly realized the essential need to account for any within-group dependence in estimating standard errors of regression parameter estimates. The typical preferred solution is to calculate cluster-robust or sandwich standard errors that permit quite general ..."
Abstract - Cited by 303 (12 self) - Add to MetaCart
this to five percent. In principle a pairs cluster bootstrap should work well, but in practice a wild cluster bootstrap performs better.

Multiclass spectral clustering

by Stella X. Yu, Jianbo Shi - In Proc. Int. Conf. Computer Vision , 2003
"... We propose a principled account on multiclass spectral clustering. Given a discrete clustering formulation, we first solve a relaxed continuous optimization problem by eigendecomposition. We clarify the role of eigenvectors as a generator of all optimal solutions through orthonormal transforms. We t ..."
Abstract - Cited by 265 (7 self) - Add to MetaCart
We propose a principled account on multiclass spectral clustering. Given a discrete clustering formulation, we first solve a relaxed continuous optimization problem by eigendecomposition. We clarify the role of eigenvectors as a generator of all optimal solutions through orthonormal transforms. We

A Probabilistic Framework for Semi-Supervised Clustering

by Sugato Basu , 2004
"... Unsupervised clustering can be significantly improved using supervision in the form of pairwise constraints, i.e., pairs of instances labeled as belonging to same or different clusters. In recent years, a number of algorithms have been proposed for enhancing clustering quality by employing such supe ..."
Abstract - Cited by 275 (14 self) - Add to MetaCart
such supervision. Such methods use the constraints to either modify the objective function, or to learn the distance measure. We propose a probabilistic model for semisupervised clustering based on Hidden Markov Random Fields (HMRFs) that provides a principled framework for incorporating supervision into prototype

Integrating Constraints and Metric Learning in Semi-Supervised Clustering

by Mikhail Bilenko, Sugato Basu, Raymond J. Mooney - In ICML , 2004
"... Semi-supervised clustering employs a small amount of labeled data to aid unsupervised learning. Previous work in the area has utilized supervised data in one of two approaches: 1) constraint-based methods that guide the clustering algorithm towards a better grouping of the data, and 2) distanc ..."
Abstract - Cited by 248 (7 self) - Add to MetaCart
) distance-function learning methods that adapt the underlying similarity metric used by the clustering algorithm. This paper provides new methods for the two approaches as well as presents a new semi-supervised clustering algorithm that integrates both of these techniques in a uniform, principled

Hierarchical Mesh Decomposition Using Fuzzy Clustering and Cuts

by Sagi Katz, Ayellet Tal , 2003
"... Cutting up a complex object into simpler sub-objects is a fundamental problem in various disciplines. In image processing, images are segmented while in computational geometry, solid polyhedra are decomposed. In recent years, in computer graphics, polygonal meshes are decomposed into sub-meshes. In ..."
Abstract - Cited by 191 (6 self) - Add to MetaCart
Cutting up a complex object into simpler sub-objects is a fundamental problem in various disciplines. In image processing, images are segmented while in computational geometry, solid polyhedra are decomposed. In recent years, in computer graphics, polygonal meshes are decomposed into sub-meshes. In this paper we propose a novel hierarchical mesh decomposition algorithm. Our algorithm computes a decomposition into the meaningful components of a given mesh, which generally refers to segmentation at regions of deep concavities. The algorithm also avoids over-segmentation and jaggy boundaries between the components. Finally, we demonstrate the utility of the algorithm in control-skeleton extraction.

Protein secondary structure from circular dichroism spectroscopy. Combining variable selection principle and cluster analysis with neural network, ridge regression and self-consistent

by Narasimha Sreerama, Sergei Yu. Venyaminov, Robert W. Woody , 1994
"... We have expanded our reference set of proteins used in the estimation of protein secondary structure by CD spectroscopy from 29 to 37 proteins by including 3 additional globular proteins with known X-ray structure and 5 denatured proteins. We have also modified the self-consistent method for analyzi ..."
Abstract - Cited by 234 (1 self) - Add to MetaCart
We have expanded our reference set of proteins used in the estimation of protein secondary structure by CD spectroscopy from 29 to 37 proteins by including 3 additional globular proteins with known X-ray structure and 5 denatured proteins. We have also modified the self-consistent method for analyzing protein CD spectra, SELCON3, by including a new selection criterion
Next 10 →
Results 1 - 10 of 6,770
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University