Results 1  10
of
1,771,318
The Plenoptic Function and the Elements of Early Vision
 Computational Models of Visual Processing
, 1991
"... experiment. Electrophysiologists have described neurons in striate cortex that are selectively sensitive to certain visual properties; for reviews, see Hubel (1988) and DeValois and DeValois (1988). Psychophysicists have inferred the existence of channels that are tuned for certain visual properties ..."
Abstract

Cited by 573 (4 self)
 Add to MetaCart
Retinal processing Early vision Memory Higherlevel vision Etc... Retina More processing Still more processing Orientation Fig.1.1 A generic diagram for visual processing. In this approach, early vision consists of a set of parallel pathways, each analyzing some particular aspect of the visual stimulus
PseudoRandom Generation from OneWay Functions
 PROC. 20TH STOC
, 1988
"... Pseudorandom generators are fundamental to many theoretical and applied aspects of computing. We show howto construct a pseudorandom generator from any oneway function. Since it is easy to construct a oneway function from a pseudorandom generator, this result shows that there is a pseudorandom gene ..."
Abstract

Cited by 887 (22 self)
 Add to MetaCart
Pseudorandom generators are fundamental to many theoretical and applied aspects of computing. We show howto construct a pseudorandom generator from any oneway function. Since it is easy to construct a oneway function from a pseudorandom generator, this result shows that there is a pseudorandom
Functions from a set to a set
 Journal of Formalized Mathematics
, 1989
"... function from a set X into a set Y, denoted by “Function of X,Y ”, the set of all functions from a set X into a set Y, denoted by Funcs(X,Y), and the permutation of a set (mode Permutation of X, where X is a set). Theorems and schemes included in the article are reformulations of the theorems of [1] ..."
Abstract

Cited by 1094 (23 self)
 Add to MetaCart
function from a set X into a set Y, denoted by “Function of X,Y ”, the set of all functions from a set X into a set Y, denoted by Funcs(X,Y), and the permutation of a set (mode Permutation of X, where X is a set). Theorems and schemes included in the article are reformulations of the theorems of [1
Greedy Function Approximation: A Gradient Boosting Machine
 Annals of Statistics
, 2000
"... Function approximation is viewed from the perspective of numerical optimization in function space, rather than parameter space. A connection is made between stagewise additive expansions and steepest{descent minimization. A general gradient{descent \boosting" paradigm is developed for additi ..."
Abstract

Cited by 951 (12 self)
 Add to MetaCart
Function approximation is viewed from the perspective of numerical optimization in function space, rather than parameter space. A connection is made between stagewise additive expansions and steepest{descent minimization. A general gradient{descent \boosting" paradigm is developed
The unity and diversity of executive functions and their contributions to complex “Frontal Lobe” tasks: a latent variable analysis
 Cognit Psychol
, 2000
"... This individual differences study examined the separability of three often postulated executive functions—mental set shifting (‘‘Shifting’’), information updating and monitoring (‘‘Updating’’), and inhibition of prepotent responses (‘‘Inhibition’’)—and their roles in complex ‘‘frontal lobe’ ’ or ‘ ..."
Abstract

Cited by 626 (9 self)
 Add to MetaCart
’ ’ or ‘‘executive’ ’ tasks. One hundred thirtyseven college students performed a set of relatively simple experimental tasks that are considered to predominantly tap each target executive function as well as a set of frequently used executive tasks: the Wisconsin Card Sorting Test (WCST), Tower of Hanoi (TOH
Knowledgebased Analysis of Microarray Gene Expression Data By Using Support Vector Machines
, 2000
"... We introduce a method of functionally classifying genes by using gene expression data from DNA microarray hybridization experiments. The method is based on the theory of support vector machines (SVMs). SVMs are considered a supervised computer learning method because they exploit prior knowledge of ..."
Abstract

Cited by 514 (8 self)
 Add to MetaCart
We introduce a method of functionally classifying genes by using gene expression data from DNA microarray hybridization experiments. The method is based on the theory of support vector machines (SVMs). SVMs are considered a supervised computer learning method because they exploit prior knowledge
Learning to rank using gradient descent
 In ICML
, 2005
"... We investigate using gradient descent methods for learning ranking functions; we propose a simple probabilistic cost function, and we introduce RankNet, an implementation of these ideas using a neural network to model the underlying ranking function. We present test results on toy data and on data f ..."
Abstract

Cited by 510 (17 self)
 Add to MetaCart
We investigate using gradient descent methods for learning ranking functions; we propose a simple probabilistic cost function, and we introduce RankNet, an implementation of these ideas using a neural network to model the underlying ranking function. We present test results on toy data and on data
Factor Graphs and the SumProduct Algorithm
 IEEE TRANSACTIONS ON INFORMATION THEORY
, 1998
"... A factor graph is a bipartite graph that expresses how a "global" function of many variables factors into a product of "local" functions. Factor graphs subsume many other graphical models including Bayesian networks, Markov random fields, and Tanner graphs. Following one simple c ..."
Abstract

Cited by 1787 (72 self)
 Add to MetaCart
A factor graph is a bipartite graph that expresses how a "global" function of many variables factors into a product of "local" functions. Factor graphs subsume many other graphical models including Bayesian networks, Markov random fields, and Tanner graphs. Following one simple
Term Rewriting Systems
, 1992
"... Term Rewriting Systems play an important role in various areas, such as abstract data type specifications, implementations of functional programming languages and automated deduction. In this chapter we introduce several of the basic comcepts and facts for TRS's. Specifically, we discuss Abstra ..."
Abstract

Cited by 613 (18 self)
 Add to MetaCart
Term Rewriting Systems play an important role in various areas, such as abstract data type specifications, implementations of functional programming languages and automated deduction. In this chapter we introduce several of the basic comcepts and facts for TRS's. Specifically, we discuss
Comparison of Multiobjective Evolutionary Algorithms: Empirical Results
, 2000
"... In this paper, we provide a systematic comparison of various evolutionary approaches to multiobjective optimization using six carefully chosen test functions. Each test function involves a particular feature that is known to cause difficulty in the evolutionary optimization process, mainly in conver ..."
Abstract

Cited by 605 (39 self)
 Add to MetaCart
In this paper, we provide a systematic comparison of various evolutionary approaches to multiobjective optimization using six carefully chosen test functions. Each test function involves a particular feature that is known to cause difficulty in the evolutionary optimization process, mainly
Results 1  10
of
1,771,318