Results 11  20
of
2,980,605
Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection
, 1997
"... We develop a face recognition algorithm which is insensitive to gross variation in lighting direction and facial expression. Taking a pattern classification approach, we consider each pixel in an image as a coordinate in a highdimensional space. We take advantage of the observation that the images ..."
Abstract

Cited by 2263 (18 self)
 Add to MetaCart
of a particular face, under varying illumination but fixed pose, lie in a 3D linear subspace of the high dimensional image space  if the face is a Lambertian surface without shadowing. However, since faces are not truly Lambertian surfaces and do indeed produce selfshadowing, images will deviate
Automatic Discovery of Linear Restraints Among Variables of a Program
, 1978
"... The model of abstract interpretation of programs developed by Cousot and Cousot [2nd ISOP, 1976], Cousot and Cousot [POPL 1977] and Cousot [PhD thesis 1978] is applied to the static determination of linear equality or inequality invariant relations among numerical variables of programs. ..."
Abstract

Cited by 733 (47 self)
 Add to MetaCart
The model of abstract interpretation of programs developed by Cousot and Cousot [2nd ISOP, 1976], Cousot and Cousot [POPL 1977] and Cousot [PhD thesis 1978] is applied to the static determination of linear equality or inequality invariant relations among numerical variables of programs.
GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems
 SIAM J. SCI. STAT. COMPUT
, 1986
"... We present an iterative method for solving linear systems, which has the property ofminimizing at every step the norm of the residual vector over a Krylov subspace. The algorithm is derived from the Arnoldi process for constructing an l2orthogonal basis of Krylov subspaces. It can be considered a ..."
Abstract

Cited by 2046 (40 self)
 Add to MetaCart
We present an iterative method for solving linear systems, which has the property ofminimizing at every step the norm of the residual vector over a Krylov subspace. The algorithm is derived from the Arnoldi process for constructing an l2orthogonal basis of Krylov subspaces. It can be considered
LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares
 ACM Trans. Math. Software
, 1982
"... An iterative method is given for solving Ax ~ffi b and minU Ax b 112, where the matrix A is large and sparse. The method is based on the bidiagonalization procedure of Golub and Kahan. It is analytically equivalent to the standard method of conjugate gradients, but possesses more favorable numerica ..."
Abstract

Cited by 649 (21 self)
 Add to MetaCart
gradient algorithms, indicating that I~QR is the most reliable algorithm when A is illconditioned. Categories and Subject Descriptors: G.1.2 [Numerical Analysis]: ApprorJmationleast squares approximation; G.1.3 [Numerical Analysis]: Numerical Linear Algebralinear systems (direct and
Maximum Likelihood Linear Transformations for HMMBased Speech Recognition
 Computer Speech and Language
, 1998
"... This paper examines the application of linear transformations for speaker and environmental adaptation in an HMMbased speech recognition system. In particular, transformations that are trained in a maximum likelihood sense on adaptation data are investigated. Other than in the form of a simple bias ..."
Abstract

Cited by 538 (65 self)
 Add to MetaCart
This paper examines the application of linear transformations for speaker and environmental adaptation in an HMMbased speech recognition system. In particular, transformations that are trained in a maximum likelihood sense on adaptation data are investigated. Other than in the form of a simple
An iterative thresholding algorithm for linear inverse problems with a sparsity constraint
, 2008
"... ..."
For Most Large Underdetermined Systems of Linear Equations the Minimal ℓ1norm Solution is also the Sparsest Solution
 Comm. Pure Appl. Math
, 2004
"... We consider linear equations y = Φα where y is a given vector in R n, Φ is a given n by m matrix with n < m ≤ An, and we wish to solve for α ∈ R m. We suppose that the columns of Φ are normalized to unit ℓ 2 norm 1 and we place uniform measure on such Φ. We prove the existence of ρ = ρ(A) so that ..."
Abstract

Cited by 560 (10 self)
 Add to MetaCart
We consider linear equations y = Φα where y is a given vector in R n, Φ is a given n by m matrix with n < m ≤ An, and we wish to solve for α ∈ R m. We suppose that the columns of Φ are normalized to unit ℓ 2 norm 1 and we place uniform measure on such Φ. We prove the existence of ρ = ρ(A) so
A Structural Approach to Operational Semantics
, 1981
"... Syntax of a very simple programming language called L. What is abstract about it will be discussed a little here and later at greater length. For us syntax is a collection of syntactic sets of phrases; each set corresponds to a different type of phrase. Some of these sets are very simple and can be ..."
Abstract

Cited by 1541 (3 self)
 Add to MetaCart
be taken as given: Truthvalues This is the set T = ftt; ffg and is ranged over by (the metavariable) t (and we also happily employ for this (and any other) metavariable sub and superscripts to generate other metavariables: t ; t 0 ; t 1k ).
Antide Sitter Space, Thermal Phase Transition, and Confinement in Gauge Theories
 Adv. Theor. Math. Phys
, 1998
"... The correspondence between supergravity (and string theory) on AdS space and boundary conformal field theory relates the thermodynamics of N = 4 super YangMills theory in four dimensions to the thermodynamics of Schwarzschild black holes in Antide Sitter space. In this description, quantum phenome ..."
Abstract

Cited by 1087 (4 self)
 Add to MetaCart
The correspondence between supergravity (and string theory) on AdS space and boundary conformal field theory relates the thermodynamics of N = 4 super YangMills theory in four dimensions to the thermodynamics of Schwarzschild black holes in Antide Sitter space. In this description, quantum
Survey on Independent Component Analysis
 NEURAL COMPUTING SURVEYS
, 1999
"... A common problem encountered in such disciplines as statistics, data analysis, signal processing, and neural network research, is nding a suitable representation of multivariate data. For computational and conceptual simplicity, such a representation is often sought as a linear transformation of the ..."
Abstract

Cited by 2241 (104 self)
 Add to MetaCart
A common problem encountered in such disciplines as statistics, data analysis, signal processing, and neural network research, is nding a suitable representation of multivariate data. For computational and conceptual simplicity, such a representation is often sought as a linear transformation
Results 11  20
of
2,980,605