Results 1  10
of
426,631
Probabilistic Horn abduction and Bayesian networks
 Artificial Intelligence
, 1993
"... This paper presents a simple framework for Hornclause abduction, with probabilities associated with hypotheses. The framework incorporates assumptions about the rule base and independence assumptions amongst hypotheses. It is shown how any probabilistic knowledge representable in a discrete Bayesia ..."
Abstract

Cited by 341 (39 self)
 Add to MetaCart
This paper presents a simple framework for Hornclause abduction, with probabilities associated with hypotheses. The framework incorporates assumptions about the rule base and independence assumptions amongst hypotheses. It is shown how any probabilistic knowledge representable in a discrete
Abduction in Logic Programming
"... Abduction in Logic Programming started in the late 80s, early 90s, in an attempt to extend logic programming into a framework suitable for a variety of problems in Artificial Intelligence and other areas of Computer Science. This paper aims to chart out the main developments of the field over th ..."
Abstract

Cited by 616 (76 self)
 Add to MetaCart
Abduction in Logic Programming started in the late 80s, early 90s, in an attempt to extend logic programming into a framework suitable for a variety of problems in Artificial Intelligence and other areas of Computer Science. This paper aims to chart out the main developments of the field over
Logic Programming, Abduction and Probability
 New Generation Computing
, 1992
"... Probabilistic Horn abduction is a simple framework to combine probabilistic and logical reasoning into a coherent practical framework. The numbers can be consistently interpreted probabilistically, and all of the rules can be interpreted logically. The relationship between probabilistic Horn abducti ..."
Abstract

Cited by 33 (3 self)
 Add to MetaCart
abduction and logic programming is at two levels. At the first level probabilistic Horn abduction is an extension of pure Prolog, that is useful for diagnosis and other evidential reasoning tasks. At another level, current logic programming implementation techniques can be used to efficiently implement
Learning probabilistic relational models
 In IJCAI
, 1999
"... A large portion of realworld data is stored in commercial relational database systems. In contrast, most statistical learning methods work only with "flat " data representations. Thus, to apply these methods, we are forced to convert our data into a flat form, thereby losing much ..."
Abstract

Cited by 619 (31 self)
 Add to MetaCart
of the relational structure present in our database. This paper builds on the recent work on probabilistic relational models (PRMs), and describes how to learn them from databases. PRMs allow the properties of an object to depend probabilistically both on other properties of that object and on properties of related
Logic Programming, Abduction and Probability: a topdown anytime algorithm for estimating prior and posterior probabilities
 New Generation Computing
, 1993
"... Probabilistic Horn abduction is a simple framework to combine probabilistic and logical reasoning into a coherent practical framework. The numbers can be consistently interpreted probabilistically, and all of the rules can be interpreted logically. The relationship between probabilistic Horn abducti ..."
Abstract

Cited by 45 (8 self)
 Add to MetaCart
abduction and logic programming is at two levels. At the first level probabilistic Horn abduction is an extension of pure Prolog, that is useful for diagnosis and other evidential reasoning tasks. At another level, current logic programming implementation techniques can be used to efficiently implement
Probabilistic Latent Semantic Indexing
, 1999
"... Probabilistic Latent Semantic Indexing is a novel approach to automated document indexing which is based on a statistical latent class model for factor analysis of count data. Fitted from a training corpus of text documents by a generalization of the Expectation Maximization algorithm, the utilized ..."
Abstract

Cited by 1207 (11 self)
 Add to MetaCart
Probabilistic Latent Semantic Indexing is a novel approach to automated document indexing which is based on a statistical latent class model for factor analysis of count data. Fitted from a training corpus of text documents by a generalization of the Expectation Maximization algorithm, the utilized
Probabilistic Latent Semantic Analysis
 In Proc. of Uncertainty in Artificial Intelligence, UAI’99
, 1999
"... Probabilistic Latent Semantic Analysis is a novel statistical technique for the analysis of twomode and cooccurrence data, which has applications in information retrieval and filtering, natural language processing, machine learning from text, and in related areas. Compared to standard Latent Sema ..."
Abstract

Cited by 760 (9 self)
 Add to MetaCart
Probabilistic Latent Semantic Analysis is a novel statistical technique for the analysis of twomode and cooccurrence data, which has applications in information retrieval and filtering, natural language processing, machine learning from text, and in related areas. Compared to standard Latent
Probabilistic Visual Learning for Object Representation
, 1996
"... We present an unsupervised technique for visual learning which is based on density estimation in highdimensional spaces using an eigenspace decomposition. Two types of density estimates are derived for modeling the training data: a multivariate Gaussian (for unimodal distributions) and a Mixtureof ..."
Abstract

Cited by 705 (15 self)
 Add to MetaCart
ofGaussians model (for multimodal distributions). These probability densities are then used to formulate a maximumlikelihood estimation framework for visual search and target detection for automatic object recognition and coding. Our learning technique is applied to the probabilistic visual modeling, detection
Probabilistic Routing in Intermittently Connected Networks
 SIGMOBILE Mobile Computing and Communication Review
, 2004
"... In this paper, we address the problem of routing in intermittently connected networks. In such networks there is no guarantee that a fully connected path between source and destination exists at any time, rendering traditional routing protocols unable to deliver messages between hosts. There does ..."
Abstract

Cited by 633 (6 self)
 Add to MetaCart
. There does, however, exist a number of scenarios where connectivity is intermittent, but where the possibility of communication still is desirable. Thus, there is a need for a way to route through networks with these properties. We propose PROPHET, a probabilistic routing protocol for intermittently
The Perceptron: A Probabilistic Model for Information Storage and Organization in The Brain
 Psychological Review
, 1958
"... If we are eventually to understand the capability of higher organisms for perceptual recognition, generalization, recall, and thinking, we must first have answers to three fundamental questions: 1. How is information about the physical world sensed, or detected, by the biological system? 2. In what ..."
Abstract

Cited by 1143 (0 self)
 Add to MetaCart
If we are eventually to understand the capability of higher organisms for perceptual recognition, generalization, recall, and thinking, we must first have answers to three fundamental questions: 1. How is information about the physical world sensed, or detected, by the biological system? 2. In what
Results 1  10
of
426,631