Results 1  10
of
101,877
Ant Colony System: A cooperative learning approach to the traveling salesman problem
 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION
, 1997
"... This paper introduces the ant colony system (ACS), a distributed algorithm that is applied to the traveling salesman problem (TSP). In the ACS, a set of cooperating agents called ants cooperate to find good solutions to TSP’s. Ants cooperate using an indirect form of communication mediated by a pher ..."
Abstract

Cited by 1000 (53 self)
 Add to MetaCart
This paper introduces the ant colony system (ACS), a distributed algorithm that is applied to the traveling salesman problem (TSP). In the ACS, a set of cooperating agents called ants cooperate to find good solutions to TSP’s. Ants cooperate using an indirect form of communication mediated by a
Ant colonies for the travelling salesman problem
, 1997
"... We describe an artificial ant colony capable of solving the travelling salesman problem (TSP). Ants of the artificial colony are able to generate successively shorter feasible tours by using information accumulated in the form of a pheromone trail deposited on the edges of the TSP graph. Computer si ..."
Abstract

Cited by 276 (5 self)
 Add to MetaCart
We describe an artificial ant colony capable of solving the travelling salesman problem (TSP). Ants of the artificial colony are able to generate successively shorter feasible tours by using information accumulated in the form of a pheromone trail deposited on the edges of the TSP graph. Computer
Where the REALLY Hard Problems Are
 IN J. MYLOPOULOS AND R. REITER (EDS.), PROCEEDINGS OF 12TH INTERNATIONAL JOINT CONFERENCE ON AI (IJCAI91),VOLUME 1
, 1991
"... It is well known that for many NPcomplete problems, such as KSat, etc., typical cases are easy to solve; so that computationally hard cases must be rare (assuming P != NP). This paper shows that NPcomplete problems can be summarized by at least one "order parameter", and that the hard p ..."
Abstract

Cited by 681 (1 self)
 Add to MetaCart
It is well known that for many NPcomplete problems, such as KSat, etc., typical cases are easy to solve; so that computationally hard cases must be rare (assuming P != NP). This paper shows that NPcomplete problems can be summarized by at least one "order parameter", and that the hard
The Hungarian method for the assignment problem
 Naval Res. Logist. Quart
, 1955
"... Assuming that numerical scores are available for the performance of each of n persons on each of n jobs, the "assignment problem" is the quest for an assignment of persons to jobs so that the sum of the n scores so obtained is as large as possible. It is shown that ideas latent in the work ..."
Abstract

Cited by 1238 (0 self)
 Add to MetaCart
Assuming that numerical scores are available for the performance of each of n persons on each of n jobs, the "assignment problem" is the quest for an assignment of persons to jobs so that the sum of the n scores so obtained is as large as possible. It is shown that ideas latent
The Ant System: Optimization by a colony of cooperating agents
 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICSPART B
, 1996
"... An analogy with the way ant colonies function has suggested the definition of a new computational paradigm, which we call Ant System. We propose it as a viable new approach to stochastic combinatorial optimization. The main characteristics of this model are positive feedback, distributed computation ..."
Abstract

Cited by 1241 (45 self)
 Add to MetaCart
methodology to the classical Traveling Salesman Problem (TSP), and report simulation results. We also discuss parameter selection and the early setups of the model, and compare it with tabu search and simulated annealing using TSP. To demonstrate the robustness of the approach, we show how the Ant System (AS
Solving the Travelling Salesman Problem on Shared and Distributed Memory Multiprocessor Systems
"... Parallel computers can roughly be divided into two families: systems with shared memory and systems with distributed memory organization. Shared memory architecture uses a single address space. Systems based on this concept allow processor communication through variables stored in a common address s ..."
Abstract
 Add to MetaCart
the network. In this paper we consider the famous Traveling Salesman Problem (TSP) [1], formulated as follows: given a set of cities along with the cost of travel between each
On the Solution of Traveling Salesman Problems
 DOC. MATH. J. DMV
, 1998
"... Following the theoretical studies of J.B. Robinson and H.W. Kuhn in the late 1940s and the early 1950s, G.B. Dantzig, R. Fulkerson, and S.M. Johnson demonstrated in 1954 that large instances of the TSP could be solved by linear programming. Their approach remains the only known tool for solving TS ..."
Abstract

Cited by 226 (7 self)
 Add to MetaCart
Following the theoretical studies of J.B. Robinson and H.W. Kuhn in the late 1940s and the early 1950s, G.B. Dantzig, R. Fulkerson, and S.M. Johnson demonstrated in 1954 that large instances of the TSP could be solved by linear programming. Their approach remains the only known tool for solving TSP instances with more than several hundred cities; over the years, it has evolved further through the work of M. Grötschel , S. Hong , M. Jünger , P. Miliotis , D. Naddef , M. Padberg ... some of its refinements that led to the solution of a 13,509city instance.
Solving the Multiple Traveling Salesman Problem by a Novel Meta heuristic Algorithm
"... The multiple traveling salesman problem (MTSP) is a generalization of the famous traveling salesman problem (TSP), where more than one salesman is used in the solution. Although the MTSP is a typical kind of computationally complex combinatorial optimization problem, it can be extended to a wide var ..."
Abstract
 Add to MetaCart
The multiple traveling salesman problem (MTSP) is a generalization of the famous traveling salesman problem (TSP), where more than one salesman is used in the solution. Although the MTSP is a typical kind of computationally complex combinatorial optimization problem, it can be extended to a wide
Improved Approximation Algorithms for Maximum Cut and Satisfiability Problems Using Semidefinite Programming
 Journal of the ACM
, 1995
"... We present randomized approximation algorithms for the maximum cut (MAX CUT) and maximum 2satisfiability (MAX 2SAT) problems that always deliver solutions of expected value at least .87856 times the optimal value. These algorithms use a simple and elegant technique that randomly rounds the solution ..."
Abstract

Cited by 1231 (13 self)
 Add to MetaCart
We present randomized approximation algorithms for the maximum cut (MAX CUT) and maximum 2satisfiability (MAX 2SAT) problems that always deliver solutions of expected value at least .87856 times the optimal value. These algorithms use a simple and elegant technique that randomly rounds
Results 1  10
of
101,877