Results 1  10
of
21,569
SemiSupervised Learning Literature Survey
, 2006
"... We review the literature on semisupervised learning, which is an area in machine learning and more generally, artificial intelligence. There has been a whole
spectrum of interesting ideas on how to learn from both labeled and unlabeled data, i.e. semisupervised learning. This document is a chapter ..."
Abstract

Cited by 757 (8 self)
 Add to MetaCart
We review the literature on semisupervised learning, which is an area in machine learning and more generally, artificial intelligence. There has been a whole
spectrum of interesting ideas on how to learn from both labeled and unlabeled data, i.e. semisupervised learning. This document is a chapter excerpt from the author’s
doctoral thesis (Zhu, 2005). However the author plans to update the online version frequently to incorporate the latest development in the field. Please obtain the latest
version at http://www.cs.wisc.edu/~jerryzhu/pub/ssl_survey.pdf
Local features and kernels for classification of texture and object categories: a comprehensive study
 International Journal of Computer Vision
, 2007
"... Recently, methods based on local image features have shown promise for texture and object recognition tasks. This paper presents a largescale evaluation of an approach that represents images as distributions (signatures or histograms) of features extracted from a sparse set of keypoint locations an ..."
Abstract

Cited by 644 (35 self)
 Add to MetaCart
Recently, methods based on local image features have shown promise for texture and object recognition tasks. This paper presents a largescale evaluation of an approach that represents images as distributions (signatures or histograms) of features extracted from a sparse set of keypoint locations and learns a Support Vector Machine classifier with kernels based on two effective measures for comparing distributions, the Earth Mover’s Distance and the χ 2 distance. We first evaluate the performance of our approach with different keypoint detectors and descriptors, as well as different kernels and classifiers. We then conduct a comparative evaluation with several stateoftheart recognition methods on four texture and five object databases. On most of these databases, our implementation exceeds the best reported results and achieves comparable performance on the rest. Finally, we investigate the influence of background correlations on recognition performance via extensive tests on the PASCAL database, for which groundtruth object localization information is available. Our experiments demonstrate that image representations based on distributions of local features are surprisingly effective for classification of texture and object images under challenging realworld conditions, including significant intraclass variations and substantial background clutter.
Near Optimal Signal Recovery From Random Projections: Universal Encoding Strategies?
, 2004
"... Suppose we are given a vector f in RN. How many linear measurements do we need to make about f to be able to recover f to within precision ɛ in the Euclidean (ℓ2) metric? Or more exactly, suppose we are interested in a class F of such objects— discrete digital signals, images, etc; how many linear m ..."
Abstract

Cited by 1513 (20 self)
 Add to MetaCart
Suppose we are given a vector f in RN. How many linear measurements do we need to make about f to be able to recover f to within precision ɛ in the Euclidean (ℓ2) metric? Or more exactly, suppose we are interested in a class F of such objects— discrete digital signals, images, etc; how many linear measurements do we need to recover objects from this class to within accuracy ɛ? This paper shows that if the objects of interest are sparse or compressible in the sense that the reordered entries of a signal f ∈ F decay like a powerlaw (or if the coefficient sequence of f in a fixed basis decays like a powerlaw), then it is possible to reconstruct f to within very high accuracy from a small number of random measurements. typical result is as follows: we rearrange the entries of f (or its coefficients in a fixed basis) in decreasing order of magnitude f  (1) ≥ f  (2) ≥... ≥ f  (N), and define the weakℓp ball as the class F of those elements whose entries obey the power decay law f  (n) ≤ C · n −1/p. We take measurements 〈f, Xk〉, k = 1,..., K, where the Xk are Ndimensional Gaussian
A DecisionTheoretic Generalization of onLine Learning and an Application to Boosting
, 1996
"... ..."
Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex
 J. Neurosci
, 1982
"... The development of stimulus selectivity in the primary sensory cortex of higher vertebrates is considered in a general mathematical framework. A synaptic evolution scheme of a new kind is proposed in which incoming patterns rather than converging afferents compete. The change in the efficacy of a gi ..."
Abstract

Cited by 428 (20 self)
 Add to MetaCart
The development of stimulus selectivity in the primary sensory cortex of higher vertebrates is considered in a general mathematical framework. A synaptic evolution scheme of a new kind is proposed in which incoming patterns rather than converging afferents compete. The change in the efficacy of a given synapse depends not only on instantaneous pre and postsynaptic activities but also on a slowly varying timeaveraged value of the postsynaptic activity. Assuming an appropriate nonlinear form for this dependence, development of selectivity is obtained under quite general conditions on the sensory environment. One does not require nonlinearity of the neuron’s integrative power nor does one need to assume any particular form for intracortical circuitry. This is first illustrated in simple cases, e.g., when the environment consists of only two different stimuli presented alternately in a random manner. The following formal statement then holds: the state of the system converges with probability 1 to points of maximum selectivity in the state space. We next consider the problem of early development of orientation selectivity and binocular interaction in primary visual cortex. Giving the environment an appropriate form, we obtain orientation tuning curves and ocular dominance comparable to what is observed in normally reared adult cats or monkeys.
Conditional skewness in asset pricing tests
 Journal of Finance
, 2000
"... If asset returns have systematic skewness, expected returns should include rewards for accepting this risk. We formalize this intuition with an asset pricing model that incorporates conditional skewness. Our results show that conditional skewness helps explain the crosssectional variation of expect ..."
Abstract

Cited by 323 (6 self)
 Add to MetaCart
If asset returns have systematic skewness, expected returns should include rewards for accepting this risk. We formalize this intuition with an asset pricing model that incorporates conditional skewness. Our results show that conditional skewness helps explain the crosssectional variation
Results 1  10
of
21,569