Results 1 - 10
of
42,049
Detectability of Discrete Event Systems
"... In this paper, we investigate the detectability problem in discrete event systems. We assume that we do not know initially which state the system is in. The problem is to determine the current and subsequent states of the system based on a sequence of observation. The observation includes partial ev ..."
Abstract
-
Cited by 806 (14 self)
- Add to MetaCart
In this paper, we investigate the detectability problem in discrete event systems. We assume that we do not know initially which state the system is in. The problem is to determine the current and subsequent states of the system based on a sequence of observation. The observation includes partial
Anomaly Detection: A Survey
, 2007
"... Anomaly detection is an important problem that has been researched within diverse research areas and application domains. Many anomaly detection techniques have been specifically developed for certain application domains, while others are more generic. This survey tries to provide a structured and c ..."
Abstract
-
Cited by 540 (5 self)
- Add to MetaCart
Anomaly detection is an important problem that has been researched within diverse research areas and application domains. Many anomaly detection techniques have been specifically developed for certain application domains, while others are more generic. This survey tries to provide a structured
The link-prediction problem for social networks
- J. AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY
, 2007
"... Given a snapshot of a social network, can we infer which new interactions among its members are likely to occur in the near future? We formalize this question as the link-prediction problem, and we develop approaches to link prediction based on measures for analyzing the “proximity” of nodes in a ne ..."
Abstract
-
Cited by 906 (6 self)
- Add to MetaCart
Given a snapshot of a social network, can we infer which new interactions among its members are likely to occur in the near future? We formalize this question as the link-prediction problem, and we develop approaches to link prediction based on measures for analyzing the “proximity” of nodes in a
Feature detection with automatic scale selection
- International Journal of Computer Vision
, 1998
"... The fact that objects in the world appear in different ways depending on the scale of observation has important implications if one aims at describing them. It shows that the notion of scale is of utmost importance when processing unknown measurement data by automatic methods. In their seminal works ..."
Abstract
-
Cited by 723 (34 self)
- Add to MetaCart
works, Witkin (1983) and Koenderink (1984) proposed to approach this problem by representing image structures at different scales in a so-called scale-space representation. Traditional scale-space theory building on this work, however, does not address the problem of how to select local appropriate
Detecting faces in images: A survey
- IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
, 2002
"... Images containing faces are essential to intelligent vision-based human computer interaction, and research efforts in face processing include face recognition, face tracking, pose estimation, and expression recognition. However, many reported methods assume that the faces in an image or an image se ..."
Abstract
-
Cited by 839 (4 self)
- Add to MetaCart
of its three-dimensional position, orientation, and the lighting conditions. Such a problem is challenging because faces are nonrigid and have a high degree of variability in size, shape, color, and texture. Numerous techniques have been developed to detect faces in a single image, and the purpose
Training Support Vector Machines: an Application to Face Detection
, 1997
"... We investigate the application of Support Vector Machines (SVMs) in computer vision. SVM is a learning technique developed by V. Vapnik and his team (AT&T Bell Labs.) that can be seen as a new method for training polynomial, neural network, or Radial Basis Functions classifiers. The decision sur ..."
Abstract
-
Cited by 727 (1 self)
- Add to MetaCart
surfaces are found by solving a linearly constrained quadratic programming problem. This optimization problem is challenging because the quadratic form is completely dense and the memory requirements grow with the square of the number of data points. We present a decomposition algorithm that guarantees
Object Detection with Discriminatively Trained Part Based Models
"... We describe an object detection system based on mixtures of multiscale deformable part models. Our system is able to represent highly variable object classes and achieves state-of-the-art results in the PASCAL object detection challenges. While deformable part models have become quite popular, their ..."
Abstract
-
Cited by 1422 (49 self)
- Add to MetaCart
We describe an object detection system based on mixtures of multiscale deformable part models. Our system is able to represent highly variable object classes and achieves state-of-the-art results in the PASCAL object detection challenges. While deformable part models have become quite popular
Distributed Snapshots: Determining Global States of Distributed Systems
- ACM TRANSACTIONS ON COMPUTER SYSTEMS
, 1985
"... This paper presents an algorithm by which a process in a distributed system determines a global state of the system during a computation. Many problems in distributed systems can be cast in terms of the problem of detecting global states. For instance, the global state detection algorithm helps to s ..."
Abstract
-
Cited by 1208 (6 self)
- Add to MetaCart
This paper presents an algorithm by which a process in a distributed system determines a global state of the system during a computation. Many problems in distributed systems can be cast in terms of the problem of detecting global states. For instance, the global state detection algorithm helps
Finding community structure in networks using the eigenvectors of matrices
, 2006
"... We consider the problem of detecting communities or modules in networks, groups of vertices with a higher-than-average density of edges connecting them. Previous work indicates that a robust approach to this problem is the maximization of the benefit function known as “modularity ” over possible div ..."
Abstract
-
Cited by 502 (0 self)
- Add to MetaCart
We consider the problem of detecting communities or modules in networks, groups of vertices with a higher-than-average density of edges connecting them. Previous work indicates that a robust approach to this problem is the maximization of the benefit function known as “modularity ” over possible
Pictorial Structures for Object Recognition
- IJCV
, 2003
"... In this paper we present a statistical framework for modeling the appearance of objects. Our work is motivated by the pictorial structure models introduced by Fischler and Elschlager. The basic idea is to model an object by a collection of parts arranged in a deformable configuration. The appearance ..."
Abstract
-
Cited by 816 (15 self)
- Add to MetaCart
of detecting an object in an image as well as the problem of learning an object model from training examples, and present efficient algorithms for both these problems. We demonstrate the techniques by learning models that represent faces and human bodies and using the resulting models to locate
Results 1 - 10
of
42,049