Results 1  10
of
1,218
Robust convex optimization
 Mathematics of Operations Research
, 1998
"... We study convex optimization problems for which the data is not specified exactly and it is only known to belong to a given uncertainty set U, yet the constraints must hold for all possible values of the data from U. The ensuing optimization problem is called robust optimization. In this paper we la ..."
Abstract

Cited by 416 (21 self)
 Add to MetaCart
) the corresponding robust convex program is either exactly, or approximately, a tractable problem which lends itself to efficient algorithms such as polynomial time interior point methods.
Robust principal component analysis?
 Journal of the ACM,
, 2011
"... Abstract This paper is about a curious phenomenon. Suppose we have a data matrix, which is the superposition of a lowrank component and a sparse component. Can we recover each component individually? We prove that under some suitable assumptions, it is possible to recover both the lowrank and the ..."
Abstract

Cited by 569 (26 self)
 Add to MetaCart
rank and the sparse components exactly by solving a very convenient convex program called Principal Component Pursuit; among all feasible decompositions, simply minimize a weighted combination of the nuclear norm and of the 1 norm. This suggests the possibility of a principled approach to robust principal component
Randomized Gossip Algorithms
 IEEE TRANSACTIONS ON INFORMATION THEORY
, 2006
"... Motivated by applications to sensor, peertopeer, and ad hoc networks, we study distributed algorithms, also known as gossip algorithms, for exchanging information and for computing in an arbitrarily connected network of nodes. The topology of such networks changes continuously as new nodes join a ..."
Abstract

Cited by 532 (5 self)
 Add to MetaCart
stochastic matrix characterizing the algorithm. Designing the fastest gossip algorithm corresponds to minimizing this eigenvalue, which is a semidefinite program (SDP). In general, SDPs cannot be solved in a distributed fashion; however, exploiting problem structure, we propose a distributed subgradient
The Determinants of Credit Spread Changes.
 Journal of Finance
, 2001
"... ABSTRACT Using dealer's quotes and transactions prices on straight industrial bonds, we investigate the determinants of credit spread changes. Variables that should in theory determine credit spread changes have rather limited explanatory power. Further, the residuals from this regression are ..."
Abstract

Cited by 422 (2 self)
 Add to MetaCart
contingentclaims framework. In Section II, we discuss the data and define the proxies used. In Section III, we analyze our results. In Section IV, we provide evidence for the robustness of our results on several fronts. First, we repeat the analysis using transactions (rather than quotes) data to obtain
Printed in U.S.A. ROBUST CONVEX OPTIMIZATION
"... We study convex optimization problems for which the data is not specified exactly and it is only known to belong to a given uncertainty set U, yet the constraints must hold for all possible values of the data from U. The ensuing optimization problem is called robust optimization. In this paper we la ..."
Abstract
 Add to MetaCart
) the corresponding robust convex program is either exactly, or approximately, a tractable problem which lends itself to efficient algorithms such as polynomial time interior point methods. 1. Introduction. Robust counterpart approach to uncertainty. the form Consider an optimization problem of
Robust Linear Programming Discrimination Of Two Linearly Inseparable Sets
, 1992
"... INTRODUCTION We consider the two pointsets A and B in the ndimensional real space R n represented by the m \Theta n matrix A and the k \Theta n matrix B respectively. Our principal objective here is to formulate a single linear program with the following properties: (i) If the convex hulls of A ..."
Abstract

Cited by 239 (32 self)
 Add to MetaCart
INTRODUCTION We consider the two pointsets A and B in the ndimensional real space R n represented by the m \Theta n matrix A and the k \Theta n matrix B respectively. Our principal objective here is to formulate a single linear program with the following properties: (i) If the convex hulls
Robust Convex Quadratically Constrained Programs
 Mathematical Programming
, 2002
"... In this paper we study robust convex quadratically constrained programs, a subset of the class of robust convex programs introduced by BenTal and Nemirovski [4]. Unlike [4], our focus in this paper is to identify uncertainty structures that allow the corresponding robust quadratically constrained p ..."
Abstract

Cited by 36 (2 self)
 Add to MetaCart
In this paper we study robust convex quadratically constrained programs, a subset of the class of robust convex programs introduced by BenTal and Nemirovski [4]. Unlike [4], our focus in this paper is to identify uncertainty structures that allow the corresponding robust quadratically constrained
ROBUST PORTFOLIO SELECTION PROBLEMS
, 2003
"... In this paper we show how to formulate and solve robust portfolio selection problems. The objective of these robust formulations is to systematically combat the sensitivity of the optimal portfolio to statistical and modeling errors in the estimates of the relevant market parameters. We introduce “u ..."
Abstract

Cited by 160 (8 self)
 Add to MetaCart
convex quadratic programs. Moreover, we show that these uncertainty structures correspond to confidence regions associated with the statistical procedures employed to estimate the market parameters. Finally, we demonstrate a simple recipe for efficiently computing robust portfolios given raw market data
Robust Recovery of Signals From a Structured Union of Subspaces
, 2008
"... Traditional sampling theories consider the problem of reconstructing an unknown signal x from a series of samples. A prevalent assumption which often guarantees recovery from the given measurements is that x lies in a known subspace. Recently, there has been growing interest in nonlinear but structu ..."
Abstract

Cited by 221 (47 self)
 Add to MetaCart
mixed ℓ2/ℓ1 program for block sparse recovery. Our main result is an equivalence condition under which the proposed convex algorithm is guaranteed to recover the original signal. This result relies on the notion of block restricted isometry property (RIP), which is a generalization of the standard RIP
Robust Solutions To LeastSquares Problems With Uncertain Data
, 1997
"... . We consider leastsquares problems where the coefficient matrices A; b are unknownbutbounded. We minimize the worstcase residual error using (convex) secondorder cone programming, yielding an algorithm with complexity similar to one singular value decomposition of A. The method can be interpret ..."
Abstract

Cited by 205 (14 self)
 Add to MetaCart
. We consider leastsquares problems where the coefficient matrices A; b are unknownbutbounded. We minimize the worstcase residual error using (convex) secondorder cone programming, yielding an algorithm with complexity similar to one singular value decomposition of A. The method can
Results 1  10
of
1,218