• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 2,856
Next 10 →

Boosting a Weak Learning Algorithm By Majority

by Yoav Freund , 1995
"... We present an algorithm for improving the accuracy of algorithms for learning binary concepts. The improvement is achieved by combining a large number of hypotheses, each of which is generated by training the given learning algorithm on a different set of examples. Our algorithm is based on ideas pr ..."
Abstract - Cited by 516 (16 self) - Add to MetaCart
presented by Schapire in his paper "The strength of weak learnability", and represents an improvement over his results. The analysis of our algorithm provides general upper bounds on the resources required for learning in Valiant's polynomial PAC learning framework, which are the best general

The use of the area under the ROC curve in the evaluation of machine learning algorithms

by Andrew P. Bradley - PATTERN RECOGNITION , 1997
"... In this paper we investigate the use of the area under the receiver operating characteristic (ROC) curve (AUC) as a performance measure for machine learning algorithms. As a case study we evaluate six machine learning algorithms (C4.5, Multiscale Classifier, Perceptron, Multi-layer Perceptron, k-Ne ..."
Abstract - Cited by 685 (3 self) - Add to MetaCart
In this paper we investigate the use of the area under the receiver operating characteristic (ROC) curve (AUC) as a performance measure for machine learning algorithms. As a case study we evaluate six machine learning algorithms (C4.5, Multiscale Classifier, Perceptron, Multi-layer Perceptron, k

Improving generalization with active learning

by David Cohn, Richard Ladner, Alex Waibel - Machine Learning , 1994
"... Abstract. Active learning differs from "learning from examples " in that the learning algorithm assumes at least some control over what part of the input domain it receives information about. In some situations, active learning is provably more powerful than learning from examples ..."
Abstract - Cited by 544 (1 self) - Add to MetaCart
Abstract. Active learning differs from "learning from examples " in that the learning algorithm assumes at least some control over what part of the input domain it receives information about. In some situations, active learning is provably more powerful than learning from examples

The Structure-Mapping Engine: Algorithm and Examples

by Brian Falkenhainer, Kenneth D. Forbus, Dedre Gentner - Artificial Intelligence , 1989
"... This paper describes the Structure-Mapping Engine (SME), a program for studying analogical processing. SME has been built to explore Gentner's Structure-mapping theory of analogy, and provides a "tool kit" for constructing matching algorithms consistent with this theory. Its flexibili ..."
Abstract - Cited by 522 (116 self) - Add to MetaCart
This paper describes the Structure-Mapping Engine (SME), a program for studying analogical processing. SME has been built to explore Gentner's Structure-mapping theory of analogy, and provides a "tool kit" for constructing matching algorithms consistent with this theory. Its

Distance metric learning, with application to clustering with sideinformation,”

by Eric P Xing , Andrew Y Ng , Michael I Jordan , Stuart Russell - in Advances in Neural Information Processing Systems 15, , 2002
"... Abstract Many algorithms rely critically on being given a good metric over their inputs. For instance, data can often be clustered in many "plausible" ways, and if a clustering algorithm such as K-means initially fails to find one that is meaningful to a user, the only recourse may be for ..."
Abstract - Cited by 818 (13 self) - Add to MetaCart
Abstract Many algorithms rely critically on being given a good metric over their inputs. For instance, data can often be clustered in many "plausible"; ways, and if a clustering algorithm such as K-means initially fails to find one that is meaningful to a user, the only recourse may

The "Independent Components" of Natural Scenes are Edge Filters

by Anthony J. Bell, Terrence J. Sejnowski , 1997
"... It has previously been suggested that neurons with line and edge selectivities found in primary visual cortex of cats and monkeys form a sparse, distributed representation of natural scenes, and it has been reasoned that such responses should emerge from an unsupervised learning algorithm that attem ..."
Abstract - Cited by 617 (29 self) - Add to MetaCart
that attempts to find a factorial code of independent visual features. We show here that a new unsupervised learning algorithm based on information maximization, a nonlinear "infomax"; network, when applied to an ensemble of natural scenes produces sets of visual filters that are localized and oriented

Solving multiclass learning problems via error-correcting output codes

by Thomas G. Dietterich, Ghulum Bakiri - JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH , 1995
"... Multiclass learning problems involve nding a de nition for an unknown function f(x) whose range is a discrete set containing k>2values (i.e., k \classes"). The de nition is acquired by studying collections of training examples of the form hx i;f(x i)i. Existing approaches to multiclass l ..."
Abstract - Cited by 726 (8 self) - Add to MetaCart
Multiclass learning problems involve nding a de nition for an unknown function f(x) whose range is a discrete set containing k>2values (i.e., k \classes"). The de nition is acquired by studying collections of training examples of the form hx i;f(x i)i. Existing approaches to multiclass

Very simple classification rules perform well on most commonly used datasets

by Robert C. Holte - Machine Learning , 1993
"... The classification rules induced by machine learning systems are judged by two criteria: their classification accuracy on an independent test set (henceforth "accuracy"), and their complexity. The relationship between these two criteria is, of course, of keen interest to the machin ..."
Abstract - Cited by 547 (5 self) - Add to MetaCart
;easy to learn" (Rendell & Seshu, 1990, p.256). Similarly, Shavlik et al. (1991) report that, with certain qualifications, "the accuracy of the perceptron is hardly distinguishable from the more complicated learning algorithms " (p.134). Further evidence is provided by studies

Thumbs Up or Thumbs Down? Semantic Orientation Applied to Unsupervised Classification of Reviews

by Peter Turney , 2002
"... This paper presents a simple unsupervised learning algorithm for classifying reviews as recommended (thumbs up) or not recommended (thumbs down). The classification of a review is predicted by the average semantic orientation of the phrases in the review that contain adjectives or adverbs. A ..."
Abstract - Cited by 784 (5 self) - Add to MetaCart
This paper presents a simple unsupervised learning algorithm for classifying reviews as recommended (thumbs up) or not recommended (thumbs down). The classification of a review is predicted by the average semantic orientation of the phrases in the review that contain adjectives or adverbs

Probabilistic Inference Using Markov Chain Monte Carlo Methods

by Radford M. Neal , 1993
"... Probabilistic inference is an attractive approach to uncertain reasoning and empirical learning in artificial intelligence. Computational difficulties arise, however, because probabilistic models with the necessary realism and flexibility lead to complex distributions over high-dimensional spaces. R ..."
Abstract - Cited by 736 (24 self) - Add to MetaCart
. Related problems in other fields have been tackled using Monte Carlo methods based on sampling using Markov chains, providing a rich array of techniques that can be applied to problems in artificial intelligence. The "Metropolis algorithm"; has been used to solve difficult problems in statistical
Next 10 →
Results 1 - 10 of 2,856
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University