• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 1,071,031
Next 10 →

Reduced Complexity Joint Iterative Equalization 1 and Multiuser Detection in Dispersive DS-CDMA Channels

by Husheng Li, H. Vincent Poor , 2005
"... Communications in dispersive direct-sequence code-division multiple-access channels suffer from intersymbol and multiple-access interference, which can significantly impair performance. Joint maximum a posteriori probability equalization and multiuser detection with error control decoding can be use ..."
Abstract - Add to MetaCart
Communications in dispersive direct-sequence code-division multiple-access channels suffer from intersymbol and multiple-access interference, which can significantly impair performance. Joint maximum a posteriori probability equalization and multiuser detection with error control decoding can

Iterative decoding of binary block and convolutional codes

by Joachim Hagenauer, Elke Offer, Lutz Papke - IEEE Trans. Inform. Theory , 1996
"... Abstract- Iterative decoding of two-dimensional systematic convolutional codes has been termed “turbo ” (de)coding. Using log-likelihood algebra, we show that any decoder can he used which accepts soft inputs-including a priori values-and delivers soft outputs that can he split into three terms: the ..."
Abstract - Cited by 600 (43 self) - Add to MetaCart
is controlled by a stop criterion derived from cross entropy, which results in a minimal number of iterations. Optimal and suboptimal decoders with reduced complexity are presented. Simulation results show that very simple component codes are sufficient, block codes are appropriate for high rates

Least-Squares Policy Iteration

by Michail G. Lagoudakis, Ronald Parr - JOURNAL OF MACHINE LEARNING RESEARCH , 2003
"... We propose a new approach to reinforcement learning for control problems which combines value-function approximation with linear architectures and approximate policy iteration. This new approach ..."
Abstract - Cited by 461 (12 self) - Add to MetaCart
We propose a new approach to reinforcement learning for control problems which combines value-function approximation with linear architectures and approximate policy iteration. This new approach

Parameterized Complexity

by Rod G. Downey, Michael R. Fellows, Rolf Niedermeier, Peter Rossmanith, Rod G. Downey (wellington, New Zeal, Michael R. Fellows (newcastle, Rolf Niedermeier (tubingen, Peter Rossmanith (tu Munchen , 1998
"... the rapidly developing systematic connections between FPT and useful heuristic algorithms | a new and exciting bridge between the theory of computing and computing in practice. The organizers of the seminar strongly believe that knowledge of parameterized complexity techniques and results belongs ..."
Abstract - Cited by 1218 (75 self) - Add to MetaCart
the rapidly developing systematic connections between FPT and useful heuristic algorithms | a new and exciting bridge between the theory of computing and computing in practice. The organizers of the seminar strongly believe that knowledge of parameterized complexity techniques and results belongs

An iterative thresholding algorithm for linear inverse problems with a sparsity constraint

by Ingrid Daubechies, Michel Defrise, Christine De Mol , 2008
"... ..."
Abstract - Cited by 752 (9 self) - Add to MetaCart
Abstract not found

Statistical mechanics of complex networks

by Réka Albert, Albert-lászló Barabási - Rev. Mod. Phys
"... Complex networks describe a wide range of systems in nature and society, much quoted examples including the cell, a network of chemicals linked by chemical reactions, or the Internet, a network of routers and computers connected by physical links. While traditionally these systems were modeled as ra ..."
Abstract - Cited by 2083 (10 self) - Add to MetaCart
Complex networks describe a wide range of systems in nature and society, much quoted examples including the cell, a network of chemicals linked by chemical reactions, or the Internet, a network of routers and computers connected by physical links. While traditionally these systems were modeled

Monotone Complexity

by Michelangelo Grigni , Michael Sipser , 1990
"... We give a general complexity classification scheme for monotone computation, including monotone space-bounded and Turing machine models not previously considered. We propose monotone complexity classes including mAC i , mNC i , mLOGCFL, mBWBP , mL, mNL, mP , mBPP and mNP . We define a simple ..."
Abstract - Cited by 2837 (11 self) - Add to MetaCart
We give a general complexity classification scheme for monotone computation, including monotone space-bounded and Turing machine models not previously considered. We propose monotone complexity classes including mAC i , mNC i , mLOGCFL, mBWBP , mL, mNL, mP , mBPP and mNP . We define a

Iterative point matching for registration of free-form curves and surfaces

by Zhengyou Zhang , 1994
"... A heuristic method has been developed for registering two sets of 3-D curves obtained by using an edge-based stereo system, or two dense 3-D maps obtained by using a correlation-based stereo system. Geometric matching in general is a difficult unsolved problem in computer vision. Fortunately, in ma ..."
Abstract - Cited by 659 (7 self) - Add to MetaCart
, which is required for environment modeling (e.g., building a Digital Elevation Map). Objects are represented by a set of 3-D points, which are considered as the samples of a surface. No constraint is imposed on the form of the objects. The proposed algorithm is based on iteratively matching points

System Dynamics: Systems Thinking and Modeling for a Complex World

by John D. Sterman , 2002
"... ..."
Abstract - Cited by 1276 (13 self) - Add to MetaCart
Abstract not found

The particel swarm: Explosion, stability, and convergence in a multi-dimensional complex space

by Maurice Clerc, James Kennedy - IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTION
"... The particle swarm is an algorithm for finding optimal regions of complex search spaces through interaction of individuals in a population of particles. Though the algorithm, which is based on a metaphor of social interaction, has been shown to perform well, researchers have not adequately explained ..."
Abstract - Cited by 822 (10 self) - Add to MetaCart
The particle swarm is an algorithm for finding optimal regions of complex search spaces through interaction of individuals in a population of particles. Though the algorithm, which is based on a metaphor of social interaction, has been shown to perform well, researchers have not adequately
Next 10 →
Results 1 - 10 of 1,071,031
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University