Results 1  10
of
1,840,898
The Nature of Statistical Learning Theory
, 1999
"... Statistical learning theory was introduced in the late 1960’s. Until the 1990’s it was a purely theoretical analysis of the problem of function estimation from a given collection of data. In the middle of the 1990’s new types of learning algorithms (called support vector machines) based on the deve ..."
Abstract

Cited by 12976 (32 self)
 Add to MetaCart
Statistical learning theory was introduced in the late 1960’s. Until the 1990’s it was a purely theoretical analysis of the problem of function estimation from a given collection of data. In the middle of the 1990’s new types of learning algorithms (called support vector machines) based
Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory
, 1995
"... Damage to the hippocampal system disrupts recent memory but leaves remote memory intact. The account presented here suggests that memories are first stored via synaptic changes in the hippocampal system, that these changes support reinstatement of recent memories in the neocortex, that neocortical s ..."
Abstract

Cited by 645 (39 self)
 Add to MetaCart
synapses change a little on each reinstatement, and that remote memory is based on accumulated neocortical changes. Models that learn via changes to connections help explain this organization. These models discover the structure in ensembles of items if learning of each item is gradual and interleaved
Designing Learning
 In
, 2004
"... …Truth [is] being involved in an eternal conversation about things that matter, conducted with passion and discipline…truth is not in the conclusions so much as in the process of conversation itself…if you want to be in truth you must be in conversation. Parker Palmer ..."
Abstract

Cited by 555 (9 self)
 Add to MetaCart
…Truth [is] being involved in an eternal conversation about things that matter, conducted with passion and discipline…truth is not in the conclusions so much as in the process of conversation itself…if you want to be in truth you must be in conversation. Parker Palmer
Probabilistic Visual Learning for Object Representation
, 1996
"... We present an unsupervised technique for visual learning which is based on density estimation in highdimensional spaces using an eigenspace decomposition. Two types of density estimates are derived for modeling the training data: a multivariate Gaussian (for unimodal distributions) and a Mixtureof ..."
Abstract

Cited by 705 (15 self)
 Add to MetaCart
We present an unsupervised technique for visual learning which is based on density estimation in highdimensional spaces using an eigenspace decomposition. Two types of density estimates are derived for modeling the training data: a multivariate Gaussian (for unimodal distributions) and a Mixture
Machine Learning in Automated Text Categorization
 ACM COMPUTING SURVEYS
, 2002
"... The automated categorization (or classification) of texts into predefined categories has witnessed a booming interest in the last ten years, due to the increased availability of documents in digital form and the ensuing need to organize them. In the research community the dominant approach to this p ..."
Abstract

Cited by 1658 (22 self)
 Add to MetaCart
to this problem is based on machine learning techniques: a general inductive process automatically builds a classifier by learning, from a set of preclassified documents, the characteristics of the categories. The advantages of this approach over the knowledge engineering approach (consisting in the manual
Locally weighted learning
 ARTIFICIAL INTELLIGENCE REVIEW
, 1997
"... This paper surveys locally weighted learning, a form of lazy learning and memorybased learning, and focuses on locally weighted linear regression. The survey discusses distance functions, smoothing parameters, weighting functions, local model structures, regularization of the estimates and bias, ass ..."
Abstract

Cited by 594 (53 self)
 Add to MetaCart
This paper surveys locally weighted learning, a form of lazy learning and memorybased learning, and focuses on locally weighted linear regression. The survey discusses distance functions, smoothing parameters, weighting functions, local model structures, regularization of the estimates and bias
SemiSupervised Learning Using Gaussian Fields and Harmonic Functions
 IN ICML
, 2003
"... An approach to semisupervised learning is proposed that is based on a Gaussian random field model. Labeled and unlabeled data are represented as vertices in a weighted graph, with edge weights encoding the similarity between instances. The learning ..."
Abstract

Cited by 741 (15 self)
 Add to MetaCart
An approach to semisupervised learning is proposed that is based on a Gaussian random field model. Labeled and unlabeled data are represented as vertices in a weighted graph, with edge weights encoding the similarity between instances. The learning
What Can Economists Learn from Happiness Research?
 FORTHCOMING IN JOURNAL OF ECONOMIC LITERATURE
, 2002
"... Happiness is generally considered to be an ultimate goal in life; virtually everybody wants to be happy. The United States Declaration of Independence of 1776 takes it as a selfevident truth that the “pursuit of happiness” is an “unalienable right”, comparable to life and liberty. It follows that e ..."
Abstract

Cited by 517 (24 self)
 Add to MetaCart
Happiness is generally considered to be an ultimate goal in life; virtually everybody wants to be happy. The United States Declaration of Independence of 1776 takes it as a selfevident truth that the “pursuit of happiness” is an “unalienable right”, comparable to life and liberty. It follows that economics is – or should be – about individual happiness. In particular, the question is how do economic growth, unemployment and inflation, as well as institutional factors such as good governance, affect individual wellbeing? In addition to this intrinsic interest, there are three major reasons for economists to consider happiness. The first is economic policy. At the microlevel, it is often impossible to make a Paretooptimal proposal, because a social action entails costs for some individuals. Hence an evaluation of the net effects, in terms of individual utilities, is needed. On an aggregate level, economic policy must deal with tradeoffs, especially those between unemployment and
Learning with local and global consistency
 Advances in Neural Information Processing Systems 16
, 2004
"... We consider the general problem of learning from labeled and unlabeled data, which is often called semisupervised learning or transductive inference. A principled approach to semisupervised learning is to design a classifying function which is sufficiently smooth with respect to the intrinsic stru ..."
Abstract

Cited by 666 (21 self)
 Add to MetaCart
We consider the general problem of learning from labeled and unlabeled data, which is often called semisupervised learning or transductive inference. A principled approach to semisupervised learning is to design a classifying function which is sufficiently smooth with respect to the intrinsic
Learning Stochastic Logic Programs
, 2000
"... Stochastic Logic Programs (SLPs) have been shown to be a generalisation of Hidden Markov Models (HMMs), stochastic contextfree grammars, and directed Bayes' nets. A stochastic logic program consists of a set of labelled clauses p:C where p is in the interval [0,1] and C is a firstorder r ..."
Abstract

Cited by 1181 (79 self)
 Add to MetaCart
order rangerestricted definite clause. This paper summarises the syntax, distributional semantics and proof techniques for SLPs and then discusses how a standard Inductive Logic Programming (ILP) system, Progol, has been modied to support learning of SLPs. The resulting system 1) nds an SLP with uniform
Results 1  10
of
1,840,898