• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 19,754
Next 10 →

Optimal Brain Damage

by Yann Le Cun, John S. Denker, Sara A. Sola , 1990
"... We have used information-theoretic ideas to derive a class of practical and nearly optimal schemes for adapting the size of a neural network. By removing unimportant weights from a network, several improvements can be expected: better generalization, fewer training examples required, and improved sp ..."
Abstract - Cited by 510 (5 self) - Add to MetaCart
speed of learning and/or classification. The basic idea is to use second-derivative information to make a tradeoff between network complexity and training set error. Experiments confirm the usefulness of the methods on a real-world application.

Learning in graphical models

by Michael I. Jordan - STATISTICAL SCIENCE , 2004
"... Statistical applications in fields such as bioinformatics, information retrieval, speech processing, image processing and communications often involve large-scale models in which thousands or millions of random variables are linked in complex ways. Graphical models provide a general methodology for ..."
Abstract - Cited by 806 (10 self) - Add to MetaCart
for approaching these problems, and indeed many of the models developed by researchers in these applied fields are instances of the general graphical model formalism. We review some of the basic ideas underlying graphical models, including the algorithmic ideas that allow graphical models to be deployed in large

On the Resemblance and Containment of Documents

by Andrei Z. Broder - In Compression and Complexity of Sequences (SEQUENCES’97 , 1997
"... Given two documents A and B we define two mathematical notions: their resemblance r(A, B)andtheircontainment c(A, B) that seem to capture well the informal notions of "roughly the same" and "roughly contained." The basic idea is to reduce these issues to set intersection probl ..."
Abstract - Cited by 506 (6 self) - Add to MetaCart
Given two documents A and B we define two mathematical notions: their resemblance r(A, B)andtheircontainment c(A, B) that seem to capture well the informal notions of "roughly the same" and "roughly contained." The basic idea is to reduce these issues to set intersection

A tutorial on support vector regression

by Alex J. Smola, Bernhard Schölkopf , 2004
"... In this tutorial we give an overview of the basic ideas underlying Support Vector (SV) machines for function estimation. Furthermore, we include a summary of currently used algorithms for training SV machines, covering both the quadratic (or convex) programming part and advanced methods for dealing ..."
Abstract - Cited by 865 (3 self) - Add to MetaCart
In this tutorial we give an overview of the basic ideas underlying Support Vector (SV) machines for function estimation. Furthermore, we include a summary of currently used algorithms for training SV machines, covering both the quadratic (or convex) programming part and advanced methods for dealing

Estimation and Inference in Econometrics

by James G. Mackinnon , 1993
"... The astonishing increase in computer performance over the past two decades has made it possible for economists to base many statistical inferences on simulated, or bootstrap, distributions rather than on distributions obtained from asymptotic theory. In this paper, I review some of the basic ideas o ..."
Abstract - Cited by 1204 (4 self) - Add to MetaCart
The astonishing increase in computer performance over the past two decades has made it possible for economists to base many statistical inferences on simulated, or bootstrap, distributions rather than on distributions obtained from asymptotic theory. In this paper, I review some of the basic ideas

Compressed sensing

by Yaakov Tsaig, David L. Donoho , 2004
"... We study the notion of Compressed Sensing (CS) as put forward in [14] and related work [20, 3, 4]. The basic idea behind CS is that a signal or image, unknown but supposed to be compressible by a known transform, (eg. wavelet or Fourier), can be subjected to fewer measurements than the nominal numbe ..."
Abstract - Cited by 3625 (22 self) - Add to MetaCart
We study the notion of Compressed Sensing (CS) as put forward in [14] and related work [20, 3, 4]. The basic idea behind CS is that a signal or image, unknown but supposed to be compressible by a known transform, (eg. wavelet or Fourier), can be subjected to fewer measurements than the nominal

Integrated architectures for learning, planning, and reacting based on approximating dynamic programming

by Richard S. Sutton - Proceedings of the SevenLh International Conference on Machine Learning , 1990
"... gutton~gte.com Dyna is an AI architecture that integrates learning, planning, and reactive execution. Learning methods are used in Dyna both for compiling planning results and for updating a model of the effects of the agent's actions on the world. Planning is incremental and can use the probab ..."
Abstract - Cited by 563 (22 self) - Add to MetaCart
the probabilistic and ofttimes incorrect world models generated by learning processes. Execution is fully reactive in the sense that no planning intervenes between perception and action. Dyna relies on machine learning methods for learning from examples--these are among the basic building blocks making up

Highly Dynamic Destination-Sequenced Distance-Vector Routing (DSDV) for Mobile Computers

by Charles E. Perkins, Pravin Bhagwat , 1994
"... An ad-hoc network is the cooperative engagement of a collection of Mobile Hosts without the required intervention of any centralized Access Point. In this paper we present an innovative design for the operation of such ad-hoc networks. The basic idea of the design is to operate each Mobile Host as a ..."
Abstract - Cited by 2076 (8 self) - Add to MetaCart
An ad-hoc network is the cooperative engagement of a collection of Mobile Hosts without the required intervention of any centralized Access Point. In this paper we present an innovative design for the operation of such ad-hoc networks. The basic idea of the design is to operate each Mobile Host

Pictorial Structures for Object Recognition

by Pedro F. Felzenszwalb, Daniel P. Huttenlocher - IJCV , 2003
"... In this paper we present a statistical framework for modeling the appearance of objects. Our work is motivated by the pictorial structure models introduced by Fischler and Elschlager. The basic idea is to model an object by a collection of parts arranged in a deformable configuration. The appearance ..."
Abstract - Cited by 816 (15 self) - Add to MetaCart
In this paper we present a statistical framework for modeling the appearance of objects. Our work is motivated by the pictorial structure models introduced by Fischler and Elschlager. The basic idea is to model an object by a collection of parts arranged in a deformable configuration

The X-tree: An index structure for high-dimensional data

by Stefan Berchtold, Daniel A. Keim, Hans-peter Kriegel - In Proceedings of the Int’l Conference on Very Large Data Bases , 1996
"... In this paper, we propose a new method for index-ing large amounts of point and spatial data in high-dimensional space. An analysis shows that index structures such as the R*-tree are not adequate for indexing high-dimensional data sets. The major problem of R-tree-based index structures is the over ..."
Abstract - Cited by 592 (17 self) - Add to MetaCart
is the overlap of the bounding boxes in the directory, which increases with growing dimension. To avoid this problem, we introduce a new organization of the directory which uses a split algorithm minimiz-ing overlap and additionally utilizes the concept of supernodes. The basic idea of overlap-minimizing split
Next 10 →
Results 1 - 10 of 19,754
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University