Results 1 - 10
of
23,774
Indexing by latent semantic analysis
- JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE
, 1990
"... A new method for automatic indexing and retrieval is described. The approach is to take advantage of implicit higher-order structure in the association of terms with documents (“semantic structure”) in order to improve the detection of relevant documents on the basis of terms found in queries. The p ..."
Abstract
-
Cited by 3779 (35 self)
- Add to MetaCart
A new method for automatic indexing and retrieval is described. The approach is to take advantage of implicit higher-order structure in the association of terms with documents (“semantic structure”) in order to improve the detection of relevant documents on the basis of terms found in queries
The spread of obesity in a large social network over 32 years
- NEW ENGLAND JOURNAL OF MEDICINE
, 2007
"... The prevalence of obesity has increased substantially over the past 30 years. We performed a quantitative analysis of the nature and extent of the person-to-person spread of obesity as a possible factor contributing to the obesity epidemic. Methods We evaluated a densely interconnected social networ ..."
Abstract
-
Cited by 509 (23 self)
- Add to MetaCart
network of 12,067 people assessed repeatedly from 1971 to 2003 as part of the Framingham Heart Study. The body-mass index was available for all subjects. We used longitudinal statistical models to examine whether weight gain in one person was associated with weight gain in his or her friends, siblings
A fast learning algorithm for deep belief nets
- Neural Computation
, 2006
"... We show how to use “complementary priors ” to eliminate the explaining away effects that make inference difficult in densely-connected belief nets that have many hidden layers. Using complementary priors, we derive a fast, greedy algorithm that can learn deep, directed belief networks one layer at a ..."
Abstract
-
Cited by 970 (49 self)
- Add to MetaCart
at a time, provided the top two layers form an undirected associative memory. The fast, greedy algorithm is used to initialize a slower learning procedure that fine-tunes the weights using a contrastive version of the wake-sleep algorithm. After fine-tuning, a network with three hidden layers forms a
Estimating the Support of a High-Dimensional Distribution
, 1999
"... Suppose you are given some dataset drawn from an underlying probability distribution P and you want to estimate a "simple" subset S of input space such that the probability that a test point drawn from P lies outside of S is bounded by some a priori specified between 0 and 1. We propo ..."
Abstract
-
Cited by 783 (29 self)
- Add to MetaCart
of the weight vector in an associated feature space. The expansion coefficients are found by solving a quadratic programming problem, which we do by carrying out sequential optimization over pairs of input patterns. We also provide a preliminary theoretical analysis of the statistical performance of our
What is a hidden Markov model?
, 2004
"... Often, problems in biological sequence analysis are just a matter of putting the right label on each residue. In gene identification, we want to label nucleotides as exons, introns, or intergenic sequence. In sequence alignment, we want to associate residues in a query sequence with ho-mologous resi ..."
Abstract
-
Cited by 1344 (8 self)
- Add to MetaCart
Often, problems in biological sequence analysis are just a matter of putting the right label on each residue. In gene identification, we want to label nucleotides as exons, introns, or intergenic sequence. In sequence alignment, we want to associate residues in a query sequence with ho
Choices, values and frames.
- American Psychologist,
, 1984
"... Making decisions is like speaking prose-people do it all the time, knowingly or unknowingly. It is hardly surprising, then, that the topic of decision making is shared by many disciplines, from mathematics and statistics, through economics and political science, to sociology and psychology. The stu ..."
Abstract
-
Cited by 684 (9 self)
- Add to MetaCart
. The expectation of a monetary gamble is a weighted average, where each possible outcome is weighted by its probability of occurrence. The expectation of the gamble in this example is .85 X $1000 + .15 X $0 = $850, which exceeds the expectation of $800 associated with the sure thing. The preference for the sure
Simple statistical gradient-following algorithms for connectionist reinforcement learning
- Machine Learning
, 1992
"... Abstract. This article presents a general class of associative reinforcement learning algorithms for connectionist networks containing stochastic units. These algorithms, called REINFORCE algorithms, are shown to make weight adjustments in a direction that lies along the gradient of expected reinfor ..."
Abstract
-
Cited by 449 (0 self)
- Add to MetaCart
Abstract. This article presents a general class of associative reinforcement learning algorithms for connectionist networks containing stochastic units. These algorithms, called REINFORCE algorithms, are shown to make weight adjustments in a direction that lies along the gradient of expected
Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score
, 2000
"... We are interested in estimating the average effect of a binary treatment on a scalar outcome. If assignment to the treatment is independent of the potential outcomes given pretreatment variables, biases associated with simple treatment-control average comparisons can be removed by adjusting for diff ..."
Abstract
-
Cited by 416 (35 self)
- Add to MetaCart
We are interested in estimating the average effect of a binary treatment on a scalar outcome. If assignment to the treatment is independent of the potential outcomes given pretreatment variables, biases associated with simple treatment-control average comparisons can be removed by adjusting
The Determinants of Credit Spread Changes.
- Journal of Finance
, 2001
"... ABSTRACT Using dealer's quotes and transactions prices on straight industrial bonds, we investigate the determinants of credit spread changes. Variables that should in theory determine credit spread changes have rather limited explanatory power. Further, the residuals from this regression are ..."
Abstract
-
Cited by 422 (2 self)
- Add to MetaCart
linear interpolation scheme to estimate the entire yield curve. Credit spreads are then defined as the difference between the yield of bond-i and the associated yield of the Treasury curve at the same maturity. Treasury Rate Level We use Datastream's monthly series of 10-year Benchmark Treasury
Current Options in the Management of Olanzapine-Associated Weight Gain
"... The newer atypical antipsychotics have the advantagesof improved efficacy for negative symptoms, with re-duced incidence of adverse effects, such as extrapyramidal side effects and tardive dyskinesias, compared with first-generation antipsychotics. One of the most frequently re-ported adverse effect ..."
Abstract
- Add to MetaCart
effects with these newer agents is weight gain.1 The increased health risks associated with weight gain—namely, coronary heart disease, diabetes, hyperten-sion, and dyslipidemia—with continued therapy pose a challenge to clinicians. An additional concern is the risk of relapse with medication nonadherence
Results 1 - 10
of
23,774