Results 1 - 10
of
13,232
On the optimality of the simple Bayesian classifier under zero-one loss
- MACHINE LEARNING
, 1997
"... The simple Bayesian classifier is known to be optimal when attributes are independent given the class, but the question of whether other sufficient conditions for its optimality exist has so far not been explored. Empirical results showing that it performs surprisingly well in many domains containin ..."
Abstract
-
Cited by 818 (27 self)
- Add to MetaCart
containing clear attribute dependences suggest that the answer to this question may be positive. This article shows that, although the Bayesian classifier’s probability estimates are only optimal under quadratic loss if the independence assumption holds, the classifier itself can be optimal under zero-one
Particle swarm optimization
, 1995
"... A concept for the optimization of nonlinear functions using particle swarm methodology is introduced. The evolution of several paradigms is outlined, and an implementation of one of the paradigms is discussed. Benchmark testing of the paradigm is described, and applications, including nonlinear fun ..."
Abstract
-
Cited by 3769 (22 self)
- Add to MetaCart
A concept for the optimization of nonlinear functions using particle swarm methodology is introduced. The evolution of several paradigms is outlined, and an implementation of one of the paradigms is discussed. Benchmark testing of the paradigm is described, and applications, including nonlinear
Formalising trust as a computational concept
, 1994
"... Trust is a judgement of unquestionable utility — as humans we use it every day of our lives. However, trust has suffered from an imperfect understanding, a plethora of definitions, and informal use in the literature and in everyday life. It is common to say “I trust you, ” but what does that mean? T ..."
Abstract
-
Cited by 529 (6 self)
- Add to MetaCart
? This thesis provides a clarification of trust. We present a formalism for trust which provides us with a tool for precise discussion. The formalism is implementable: it can be embedded in an artificial agent, enabling the agent to make trust-based decisions. Its applicability in the domain of Distributed
The cascade-correlation learning architecture
- Advances in Neural Information Processing Systems 2
, 1990
"... Cascade-Correlation is a new architecture and supervised learning algorithm for artificial neural networks. Instead of just adjusting the weights in a network of fixed topology, Cascade-Correlation begins with a minimal network, then automatically trains and adds new hidden units one by one, creatin ..."
Abstract
-
Cited by 801 (6 self)
- Add to MetaCart
Cascade-Correlation is a new architecture and supervised learning algorithm for artificial neural networks. Instead of just adjusting the weights in a network of fixed topology, Cascade-Correlation begins with a minimal network, then automatically trains and adds new hidden units one by one
Factor Graphs and the Sum-Product Algorithm
- IEEE TRANSACTIONS ON INFORMATION THEORY
, 1998
"... A factor graph is a bipartite graph that expresses how a "global" function of many variables factors into a product of "local" functions. Factor graphs subsume many other graphical models including Bayesian networks, Markov random fields, and Tanner graphs. Following one simple c ..."
Abstract
-
Cited by 1791 (69 self)
- Add to MetaCart
A factor graph is a bipartite graph that expresses how a "global" function of many variables factors into a product of "local" functions. Factor graphs subsume many other graphical models including Bayesian networks, Markov random fields, and Tanner graphs. Following one simple
The genetical evolution of social behaviour
- I. J. Theor. Biol.
, 1964
"... A genetical mathematical model is described which allows for interactions between relatives on one another's fitness. Making use of Wright's Coefficient of Relationship as the measure of the proportion of replica genes in a relative, a quantity is found which incorporates the maximizing p ..."
Abstract
-
Cited by 932 (2 self)
- Add to MetaCart
A genetical mathematical model is described which allows for interactions between relatives on one another's fitness. Making use of Wright's Coefficient of Relationship as the measure of the proportion of replica genes in a relative, a quantity is found which incorporates the maximizing
Chaff: Engineering an Efficient SAT Solver
, 2001
"... Boolean Satisfiability is probably the most studied of combinatorial optimization/search problems. Significant effort has been devoted to trying to provide practical solutions to this problem for problem instances encountered in a range of applications in Electronic Design Automation (EDA), as well ..."
Abstract
-
Cited by 1350 (18 self)
- Add to MetaCart
as in Artificial Intelligence (AI). This study has culminated in the development of several SAT packages, both proprietary and in the public domain (e.g. GRASP, SATO) which find significant use in both research and industry. Most existing complete solvers are variants of the Davis-Putnam (DP) search algorithm
Laplacian eigenmaps and spectral techniques for embedding and clustering.
- Proceeding of Neural Information Processing Systems,
, 2001
"... Abstract Drawing on the correspondence between the graph Laplacian, the Laplace-Beltrami op erator on a manifold , and the connections to the heat equation , we propose a geometrically motivated algorithm for constructing a representation for data sampled from a low dimensional manifold embedded in ..."
Abstract
-
Cited by 668 (7 self)
- Add to MetaCart
in a higher dimensional space. The algorithm provides a computationally efficient approach to nonlinear dimensionality reduction that has locality preserving properties and a natural connection to clustering. Several applications are considered. In many areas of artificial intelligence, information
MIXED MNL MODELS FOR DISCRETE RESPONSE
- JOURNAL OF APPLIED ECONOMETRICS J. APPL. ECON. 15: 447--470 (2000)
, 2000
"... This paper considers mixed, or random coefficients, multinomial logit (MMNL) models for discrete response, and establishes the following results. Under mild regularity conditions, any discrete choice model derived from random utility maximization has choice probabilities that can be approximated as ..."
Abstract
-
Cited by 487 (15 self)
- Add to MetaCart
as closely as one pleases by a MMNL model. Practical estimation of a parametric mixing family can be carried out by Maximum Simulated Likelihood Estimation or Method of Simulated Moments, and easily computed instruments are provided that make the latter procedure fairly efficient. The adequacy of a mixing
A maximum likelihood approach to continuous speech recognition
- IEEE Trans. Pattern Anal. Machine Intell
, 1983
"... Abstract-Speech recognition is formulated as a problem of maximum likelihood decoding. This formulation requires statistical models of the speech production process. In this paper, we describe a number of sta-tistical models for use in speech recognition. We give special attention to determining the ..."
Abstract
-
Cited by 477 (9 self)
- Add to MetaCart
the parameters for such models from sparse data. We also describe two decoding methods, one appropriate for constrained artificial languages and one appropriate for more realistic decoding tasks. To illustrate the usefulness of the methods described, we review a number of decoding results that have been obtained
Results 1 - 10
of
13,232