Results 1  10
of
96,437
Near Optimal Signal Recovery From Random Projections: Universal Encoding Strategies?
, 2004
"... Suppose we are given a vector f in RN. How many linear measurements do we need to make about f to be able to recover f to within precision ɛ in the Euclidean (ℓ2) metric? Or more exactly, suppose we are interested in a class F of such objects— discrete digital signals, images, etc; how many linear m ..."
Abstract

Cited by 1513 (20 self)
 Add to MetaCart
Suppose we are given a vector f in RN. How many linear measurements do we need to make about f to be able to recover f to within precision ɛ in the Euclidean (ℓ2) metric? Or more exactly, suppose we are interested in a class F of such objects— discrete digital signals, images, etc; how many linear measurements do we need to recover objects from this class to within accuracy ɛ? This paper shows that if the objects of interest are sparse or compressible in the sense that the reordered entries of a signal f ∈ F decay like a powerlaw (or if the coefficient sequence of f in a fixed basis decays like a powerlaw), then it is possible to reconstruct f to within very high accuracy from a small number of random measurements. typical result is as follows: we rearrange the entries of f (or its coefficients in a fixed basis) in decreasing order of magnitude f  (1) ≥ f  (2) ≥... ≥ f  (N), and define the weakℓp ball as the class F of those elements whose entries obey the power decay law f  (n) ≤ C · n −1/p. We take measurements 〈f, Xk〉, k = 1,..., K, where the Xk are Ndimensional Gaussian
Completely Derandomized SelfAdaptation in Evolution Strategies
 Evolutionary Computation
, 2001
"... This paper puts forward two useful methods for selfadaptation of the mutation distribution  the concepts of derandomization and cumulation. Principle shortcomings of the concept of mutative strategy parameter control and two levels of derandomization are reviewed. Basic demands on the selfadapta ..."
Abstract

Cited by 549 (58 self)
 Add to MetaCart
This paper puts forward two useful methods for selfadaptation of the mutation distribution  the concepts of derandomization and cumulation. Principle shortcomings of the concept of mutative strategy parameter control and two levels of derandomization are reviewed. Basic demands on the self
The Ant System: Optimization by a colony of cooperating agents
 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICSPART B
, 1996
"... An analogy with the way ant colonies function has suggested the definition of a new computational paradigm, which we call Ant System. We propose it as a viable new approach to stochastic combinatorial optimization. The main characteristics of this model are positive feedback, distributed computation ..."
Abstract

Cited by 1300 (46 self)
 Add to MetaCart
) can be applied to other optimization problems like the asymmetric traveling salesman, the quadrat...
Cooperative strategies and capacity theorems for relay networks
 IEEE TRANS. INFORM. THEORY
, 2005
"... Coding strategies that exploit node cooperation are developed for relay networks. Two basic schemes are studied: the relays decodeandforward the source message to the destination, or they compressandforward their channel outputs to the destination. The decodeandforward scheme is a variant of ..."
Abstract

Cited by 739 (19 self)
 Add to MetaCart
outputs and the destination’s channel output. The strategies are applied to wireless channels, and it is shown that decodeandforward achieves the ergodic capacity with phase fading if phase information is available only locally, and if the relays are near the source node. The ergodic capacity coincides
Constrained model predictive control: Stability and optimality
 AUTOMATICA
, 2000
"... Model predictive control is a form of control in which the current control action is obtained by solving, at each sampling instant, a finite horizon openloop optimal control problem, using the current state of the plant as the initial state; the optimization yields an optimal control sequence and t ..."
Abstract

Cited by 738 (16 self)
 Add to MetaCart
Model predictive control is a form of control in which the current control action is obtained by solving, at each sampling instant, a finite horizon openloop optimal control problem, using the current state of the plant as the initial state; the optimization yields an optimal control sequence
The program dependence graph and its use in optimization
 ACM Transactions on Programming Languages and Systems
, 1987
"... In this paper we present an intermediate program representation, called the program dependence graph (PDG), that makes explicit both the data and control dependence5 for each operation in a program. Data dependences have been used to represent only the relevant data flow relationships of a program. ..."
Abstract

Cited by 996 (3 self)
 Add to MetaCart
incremental optimization, permitting transformations to be triggered by one another and applied only to affected dependences.
Optimizing Search Engines using Clickthrough Data
, 2002
"... This paper presents an approach to automatically optimizing the retrieval quality of search engines using clickthrough data. Intuitively, a good information retrieval system should present relevant documents high in the ranking, with less relevant documents following below. While previous approaches ..."
Abstract

Cited by 1314 (23 self)
 Add to MetaCart
This paper presents an approach to automatically optimizing the retrieval quality of search engines using clickthrough data. Intuitively, a good information retrieval system should present relevant documents high in the ranking, with less relevant documents following below. While previous
Dynamic programming algorithm optimization for spoken word recognition
 IEEE TRANSACTIONS ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING
, 1978
"... This paper reports on an optimum dynamic programming (DP) based timenormalization algorithm for spoken word recognition. First, a general principle of timenormalization is given using timewarping function. Then, two timenormalized distance definitions, ded symmetric and asymmetric forms, are der ..."
Abstract

Cited by 788 (3 self)
 Add to MetaCart
words in different The effective slope constraint characteristic is qualitatively analyzed, and the optimum slope constraint condition is determined through experiments. The optimized algorithm is then extensively subjected to experimentat comparison with various DPalgorithms, previously applied
Optimal approximation by piecewise smooth functions and associated variational problems
 Commun. Pure Applied Mathematics
, 1989
"... (Article begins on next page) The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters. Citation Mumford, David Bryant, and Jayant Shah. 1989. Optimal approximations by piecewise smooth functions and associated variational problems. ..."
Abstract

Cited by 1294 (14 self)
 Add to MetaCart
(Article begins on next page) The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters. Citation Mumford, David Bryant, and Jayant Shah. 1989. Optimal approximations by piecewise smooth functions and associated variational problems
Depthfirst IterativeDeepening: An Optimal Admissible Tree Search
 Artificial Intelligence
, 1985
"... The complexities of various search algorithms are considered in terms of time, space, and cost of solution path. It is known that breadthfirst search requires too much space and depthfirst search can use too much time and doesn't always find a cheapest path. A depthfirst iteratiwdeepening a ..."
Abstract

Cited by 527 (24 self)
 Add to MetaCart
deepening algorithm is shown to be asymptotically optimal along all three dimensions for exponential pee searches. The algorithm has been used successfully in chess programs, has been eflectiuely combined with bidirectional search, and has been applied to bestfirst heuristic search as well. This heuristic depth
Results 1  10
of
96,437